NMR study of mononuclear, binuclear and trinuclear tris(hydroxymethyl)phosphine-platinum(I1) complexes with aquo or hydroxo ligands

Emiliana Costa, Martin Murray, Paul G. Pringle* and Martin B. Smith *School of Chemrstty, Umversrty of Bnsiol, Canto& Close, Bnstol BS8 ITS (UK)*

(Recerved February 25, 1993, revrsed April 29, 1993)

Abstract

 T_{max} , $\frac{1}{2}$ $\frac{1}{2}$ requirem of $\left[\text{tr}_{\Omega_2}(\text{Cr}_2\text{OII})_3\right]_2$ ($\Lambda =$ O of Br) which Br_{4} ($\Gamma =$ iVO₃, Br₄, Fr₆ of ClO₄) in water gives three species A, **D** and C. Addition of FLT to this mixture gives A exclusively which is identified as the bis(aquo) can $\left[\text{P}(C_{12})_{21}\right]$ ₂ $\left[\text{C}_{12}\right]$. The addominant can be substituted by pyriume, $2,2$ -oppyriume of $9,10$ -phemanthrome which is identified as the binuclear species P is in a species P and P in $\sum_{i=1}^n$ and P in the binuclear species in the binuclear species in the binuclear species in the binuclear species in the binuclear spec which is identified as the binuclear species $[\mathbf{r}_1, \mathbf{r}_2]$ $[\mathbf{r}_1, \mathbf{r}_2]$ and $[\mathbf{r}_2, \mathbf{r}_1]$ and \mathbf{r}_3 and \mathbf{r}_4 in a and solution in the presence or \mathbf{A} g, the third species C is the main product which is trimulear (as evidenced by \mathbf{F} and \mathbf{F} in water and have been characterised only by 3. Photographs Γ and Γ and Γ and Γ the chemistry of the chemistry of the chemistry of the chemistry of the products are very solution. μ water and have been characterised only by ϵ and ϵ the chemistry equals PM equals PM

Introduction

The reported [l] anti-cancer activity of bis(phosphine)platinum(II) analogues of cisplatin makes it important to understand the aqueous chemistry of such systems [2]. Longato and co-workers [3] and Miyamoto *et al.* [4] have recently shown that the aquo species $[Pt(PMe₃)₂(OH₂)₂]²⁺$ is readily made and that its form in water depends critically on the pH, as summarised in Scheme 1. We have previously shown [5] that the hydrophilic ligand tris(hydroxymethyl) phosphine **(1)** has coordinating properties similar to PMe, but with the added dimension of high water s_{sub} but with the added dimension of light water solubility of its complexes. In this paper, we report the aquo complex $[Pt(OH₂)₂{P(CH₂OH)₃}₂]²⁺$ and compare $\frac{d^2u}{dx^2}$ is complex $\frac{1}{2}$ if $\frac{1}{2}$ $\$ $\frac{1}{2}$ chemistry with the reported $\frac{1}{2}$ and $\frac{1}{2}$ and given added interest by the reported [6] anti-cancer activity of platinum(II) complexes of **1**.

Experimental

The reactions were carried out in H_2O or D_2O in air (no differences were observed if the reactions were carried out under nitrogen). The starting material $[PtCl₂{P(CH₂OH)₃}$] was made as previously described [5a]. The products were exceedingly water soluble and our attempts to isolate them as solids for further analysis were unsuccessful. Hence all products were characterised only by NMR (see Table 1).

Preparation of $[Pt(OH_2), \{P(CH_2OH)\}$ *,* $]/(NO_3)$ *,*

A solution of AgNO₃ (97 mg, 0.57 mmol) in D_2O (0.5 cm^3) was added to a solution of $[PtCl₂$ - ${P(CH₂OH)₃}$] (124 mg, 0.24 mmol) in D₂O (0.7 cm³) to give immediately a precipitate of AgCl. After 5 min, this solution was filtered and then concentrated nitric acid (0.030 cm^3) was added. The product was then analysed by NMR spectroscopy. Similar procedures using $AgBF_4/HBF_4$, $AgPF_6/HPF_6$ and $AgClO_4/HClO_4$ gave the corresponding salt in solution. Addition of $AgNO₃/HNO₃$ to $[PtBr₂{P(CH₂OH)₃}_{2}]$ gave the same species.

Preparation of $[PtL_{2} \{P(CH_{2}OH)\}$ *,* $] \{NO_{3}\}$ *,* $L = py$ *, bipy or phen*

Solutions of $[Pt(OH₂)₂{P(CH₂OH)₃}₂](NO₃)₂$ were generated as described above and then pyridine (0.030 cm3, 0.37 mmol), 2,2'-bipyridine (20 mg, 0.13 mmol) or 9,10-phenanthroline (25 mg, 0.13 mmol) was added and the product identified by ³¹P NMR spectroscopy.

Preparation of $[Pt_2(\mu\text{-}OH)_2\{P(CH_2OH)_3\}_4/(NO_3)_2$

A solution of AgNO₃ (97 mg, 0.57 mmol) in D_2O (0.5 cm^3) was added to a solution of $[PtCl₂$ -

^{*}Author to whom correspondence should be addressed.

Scheme 1. Aqueous chemistry with Pt-PMe, systems.

 ${P(CH₂OH)₃}$] (124 mg, 0.24 mmol) in D₂O (0.7 cm³) to give immediately a precipitate of AgCI. After 5 min this solution was filtered and then 0.1 M aqueous NEt_3 was added dropwise until the pH was 7 and the product was characterised by NMR spectroscopy.

Preparation of $[Pt_3(\mu\text{-}OH)_3\{P(CH_2OH)_3\}_6$ *](NO₃)₃*

A solution of AgNO₃ (194 mg, 1.14 mmol) in D_2O (0.5 cm^3) was added to a solution of $[\text{PtCl}_2\text{f}(\text{CH}_2\text{OH})_3]_2$ (124 mg, 0.24 mmol) in $D₂O$ (0.7 cm³) to give immediately a precipitate of AgCl. After 5 min this solution was filtered and then allowed to stand at room temperature for 24 h. The species C was then over 90% of the phosphorus-containing product. The same species was obtained using $AgPF_6$ in place of $AgNO_3$.

Results and discussion

The aqueous chemistry that we have discovered is summarised in Scheme 2. Treatment of [PtCl₂- $\{P(CH,OH),\}$ (2) with an excess of AgNO, gave a strongly acidic (pH c . 1) solution which contained a mixture of three phosphorus-containing species **A, B** and C as shown by 31P NMR spectroscopy. Initially **A** and **B** predominate but after 8 h all three species were clearly present (see Fig. 1). Addition of nitric acrd to this mixture gave **A** exclusively to which we assign the structure $[Pt(OH₂)₂{P(CH₂OH)₃}₂]²⁺$ (3a) based on the following observations. The ^{31}P and ^{195}Pt NMR data are similar to the analogous $PMe₃$ (3b) and $PEt₃(3c)$ species (see Table 1). The product of this reaction is independent of the silver salt (AgNO₃, AgBF₄, AgPF₆) or AgClO₄), the acid (HNO₃, HBF₄, HPF₆ or HClO₄) and the halide in $[PtX_2{P(CH_2OH)}_3]_2$ (X = Cl or Br)

showing that neither halide nor nitrate coordination is involved.

The water ligands in **3a** are easily substituted by chloride to regenerate the precursor 2 (see Scheme 2). Treatment of **3a** with pyridine, bipy or phen gave new species to which we assign structures **4a-c;** complexes of the type $[PtL_2(PR_3)_2]^2$ ⁺ (L=N-methyluracil [8], py [9] or bipy [9]) have been previously reported.

Titration of solutions containing a mixture of **A** and **B** with 0.1 M aqueous NEt, to raise the pH to 7 yields **B** exclusively; addition of more NEt₃ leads to decomposition (see below). Species **B** is assrgned the bmuclear structure 5a on the basis of its ³¹P NMR spectrum which shows the characteristic 'J(PtP) and 'J(PtP) coupling (Fig. 1) and the NMR data which are similar to the analogous $PMe₃$ (5b) and $PEt₃$ (5c) complexes (see Table 1). Addition of HPF, to **Sa** regenerates the dicationic species **3a (see** Scheme 2).

The formation of the third species, C from [Pt- $Cl_2[PCH_2OH]_3{}_2]$ and Ag⁺ is accelerated by the presence of an excess of Ag' (see 'Experimental'). Solutions in which C is the only phosphorus-containing species had pH of c. 1. The ^{31}P and particularly the ^{195}Pt NMR spectrum of C strongly supports the presence of a triplatinum species: as illustrated in Fig. 1, the central feature of the 3*P NMR spectrum has the 1:8:18:8:1 pattern consistent with the presence of a triplatinum complex (see Table 1 for data) and the observed pattern for the ¹⁹⁵Pt resonance is in close agreement with that calculated for a Pt_3 (PR_3)₆ spin system (see Fig. 2). The $2J(PtPt)$ for C is 869 Hz compared with 120 Hz in the binuclear complex **5a** but no inference can be made from this since $\frac{2}{I}$ (PtPt) are unpredictably sensitive to small structural changes [10]. Addition of HPF₆ to C regenerates the aqua species **3a.** We tentatively assign

Scheme 2. Aqueous chemistry with Pt-P(CH₂OH)₃ systems.

Fig. 1. ³¹P NMR spectrum (36.2 MHz) of the mixture of mononuclear (A), binuclear (B) and trinuclear (C) species generated by addition of AgNO₃ to $[PLCl_2(P(CH_2OH)_2)]$ in D₂O

the structure 6 to C, analogous to $[Pt_3(\mu$ -OH)₃- $(NH_3)_{6}$ ³⁺, one of the proposed metabolites of cisplatin [11]. The mechanism of the formation of 6 and the promoting role of Ag⁺ remain obscure. Unfortunately

TABLE 1. ³¹P and ¹⁹⁵Pt NMR data^a

Complex	$\delta(P)$	$^1J(PtP)$	$3J(PtP)$ $\delta(Pt)$		$^{2}J(PtPt)$	Ref
3а	4.6	3647		131		
3b	-25.3	3745		176		3
3c	94	3737				
4а	-1.5	3052				
4b	6.9	3208				
4c	8.2	3227				
5а	5.6	3345	13	499	120	
5b	-256	3401	10	601	240	3
5c	6.8	3452	12			7
б	8.1	3008	23	646	869	
7	-31.4	3320		414		4

^aAll spectra measured in D₂O at +28 °C. ³¹P NMR chemical shifts are to high frequency of external 85% H_3PO_4 and ¹⁹⁵Pt shifts are to high frequency of Ξ (Pt) = 21.4 MHz (literature values [3, 4] have been adjusted to this scale).

repeated attempts to isolate 6 (also 3a and 5a) from water have yielded only intractable oils from which pure complexes were not obtained but the ³¹P NMR spectra of the redissolved oils show that essentially no decomposition of the complexes had occurred.

The aqueous chemistry of the Pt-P($CH₂OH$ ₃ and Pt-PMe₃ systems can be compared in Schemes 1 and 2. In both systems, the $[Pt(OH₂)₂(PR₃)₂]²⁺ complexes$ are formed in high yield in acidic solutions [3] and the water ligands are readily substituted by N-donors [8]. In both systems, addition of alkali gives the binuclear

Fig. 2. (a) ¹⁹⁵Pt NMR spectrum of C m D_2O (peaks marked * are assoctated wrth the bmuclear complex B); **(b)** spectrum simulated for Pt₃P₆ spin system with $^{2}J(PtPt)=869$ Hz, ${}^{1}J(PtP) = 3008$ Hz, ${}^{3}J(PtP) = 0$ (the true value of 23 Hz obtained from the $31P$ spectrum was not used because the linewidth of the Pt signals was c . 25 Hz and hence this coupling was lost in the 195 Pt spectrum).

species $[Pt_2(\mu\text{-OH})_2(\text{PR}_3)_4]^{2+}$ [3]. At high base concentration, the unusual, terminal hydroxo-platinum complex $[Pt(OH)₂(PMe₃)₂]$ (7) is formed [4] but addition of KOH or excess NEt₃ to our $P(CH_2OH)_3$ complexes gave a complex mixture of products possibly because the coordinated hydroxymethylphosphine is acidic [5] and in the presence of hydroxide, can eliminate formaldehyde in a similar way to hydroxymethylphosphonium salts [12].

A trinuclear complex with $P(CH₂OH)₃$ is formed but the analogous PMe, complex has not been observed. Indeed it has been suggested [4] that $[Pt_3(\mu OH$ ₃(PMe₃₎₆]³⁺ would be a very crowded molecule and thus unlikely to be stable with respect to other species. We have previously shown [5] that hydrogen bonding stabilises complexes of $P(CH₂OH)$, and it may be that hydrogen bonding in 6 also explains its stability.

Acknowledgements

We thank the SERC and Albright and Wilson for financial support, and NATO for the provision of a travel grant.

References

- l (a) H Urata, M Tanaka and T Fuchikami, Chem Lett., (1987) 751; (b) H.C. Apfelbaum, J. Blum and F. Mandelbaum-Shavrt, Inorg. *Chun. Acta, 186* (1991) 243.
- 2 (a) B. Longato, G. Prlloni, G.M. Borona and B. Coram, J. Chem Soc., Chem Commun, (1986) 1478; (b) V Scarcia, A. Furlam, B. Longato, B. Coram and G Pilloni, *Inorg Chim. Actu,* 153 (1988) 67; (c) B Longato, G Prlloni, G.M Borona and B. Corain, *Inorg Chum Acta, 137* (1987) 75, (d) G. Bandoli, G. Trovó, A. Dolmella and B Longato, *Inorg Chem*, *31 (1992) 45; (e)* K S. Wyatt, K N Harrison and C M Jensen, Inorg Chem, 31 (1992) 3867.
- 3 G. Trovó, G. Bandolı, U Casellato, B Corain, M. Nicolini and B. Longato, Inorg Chem, 29 (1990) 4616.
- T.K Mlyamoto, Y. Suzukr and H Ichlda, *Chem Left, (1992) 839.*
- (a) J.W. Ellis, K.N. Harrrson, P A T. Hoye, A G Orpen, P G Pringle and M.B. Smith, *Inorg Chem., 31 (1992) 3026;* (b) P.A.T. Hoye, P.G Pringle, M.B. Smith and K. Worboys, J. *Chem Sot,* Dalton *Trans.,* (1993) 269.
- 6 (a) Ferrer Internacronal, *Spanrsh Parent No. ES 548* 849 (1986), Chem. Abstr, 108 (1988) 197 312, (b) Ferrer Internacional, *Spanish Patent No ES 547 481 (1986) Chem. Abstr, 107 (1987) 88 572.*
- 7 G.W. Bushnell, Can J. *Chem, 56 (1978) 1773*
- 8 G. Trovó and B. Longato, *Inorg Chum Acta*, 192 (1992) 13
- 9 F.R. Hartley, S.G Murray and A Wilkmson, Inorg *Chem, 28 (1989) 549.*
- 0 R Goodfellow, in J. Mason (ed), Multinuclear NMR, Plenum New York, London, 1987.
- 1 R. Faggiani, B. Lippert, C J L Lock and B. Rosenberg, *Inorg* Chem., I6 (1977) 1192.
- 12 KA. Petrov and V.A. Parshma, *Russ Chem Rev,* **(Engl** *Transl),* **37 (1968) 532.**