Note

Hydrothermal synthesis and crystal structure of the trimolybdate, $(H_3NCH_2CH_2NH_3)Mo_3O_{10}$

M. Ishaque Khan, Qin Chen and Jon Zubieta* Department of Chemistry, Syracuse University, Syracuse, NY 13244 (USA)

(Received June 5, 1993)

Abstract

The hydrothermal reaction of Na₂MoO₄·2H₂O, MoO₃, H₂NCH₂CH₂NH₂·2HCl and H₂O in the mole ratio 6:6:10:300 at 160 °C under autogenous pressure yields colorless needles of (H₃NCH₂CH₂NH₃)Mo₃O₁₀ (1). The structure of 1 consists of distorted {MoO₆} octahedra linked through face-, edgeand corner-sharing interactions into infinite chains. The ethylenediamminium cations occupy the channels between these chains. Crystal data: monoclinic space group P2₁/n, a=8.083(2), b=14.465(2), c=8.919(2) Å, $\beta=98.19(1)^{\circ}$, V=1032.2(7)Å³, Z=4, $D_{calc}=3.28$ g cm⁻³; structure solution and refinement based on 2856 reflections converged at R=0.0191.

Introduction

Polymeric structures based on infinite chains of oxomolybdenum polyhedra are characteristic of the dimolybdate and trimolybdate systems, $\{[Mo_2O_7]^{2-}\}_{\infty}$ and $\{[Mo_3O_{10}]^{2-}\}_{\infty}$ [1–6]. While these structures share a common one-dimensional framework, the details of the polyhedral connectivity are clearly dependent on the templating effects of the cations. This feature is demonstrated by the structural variability associated with $(NH_4)_2Mo_3O_{10}$ [3], $K_2Mo_3O_{10}$ [6] and $(H_3NCH_2 CH_2NH_3)Mo_3O_{10}$, whose preparation and structure are reported in this paper.

Experimental

Preparation of $(H_3NCH_2CH_2NH_3)Mo_3O_{10}$ (1)

A mixture of $Na_2MoO_4 \cdot 2H_2O$, MoO_3 , ethylenediamine dihydrochloride and H_2O in the mole ratio

TABLE 1. Summary of crystal data and experimental conditions for the X-ray study of 1

Composition	C.H. N.O. Mor
Space group	$P_{2,n}$
a (Å)	8.083(2)
b (Å)	14.465(2)
c (Å)	8.919(2)
β(°)	98.19(1)
$V(Å^3)$	1032.2(7)
Z	4
$D_{\rm calc} (\rm g \ \rm cm^{-3})$	3.28
T (K)	295
λ (Mo K α) (Å)	0.71073
$\mu (\rm cm^{-1})$	36.3
No. observed reflections	2856 $(I_o \ge 3\sigma(I_o))$
R	0.0191
R _w	0.0192
GOF	1.44

6:6:10:300 (5 ml volume) was placed in a Teflon-lined Parr acid digestion bomb and heated for 5 days at 160 °C and autogeneous pressure. After allowing the reaction mixture to cool for 6 h, colorless needles of 1 were collected, washed with water and air dried (yield: 1.2 g, 24%). The material is insoluble in all common organic solvents and in water. *Anal.* Calc. for $C_2H_{10}N_2O_{10}Mo_3$: C, 4.71; H, 1.96. Found: C, 4.65; H, 1.87%. IR (KBr pellet, 1000–400 cm⁻¹ region): 965(m), 942(sh), 908(s), 891(vs), 862(vs), 823(m), 799(m), 739(s), 700(vs), 602(s), 554(s).

X-ray structure determination

X-ray data was collected on a Rigaku AFC5S fourcircle diffractometer. Table 1 summarizes the crystal parameters and details of the structure solution and refinement. Non-hydrogen atoms were refined using anisotropic temperature factors. All hydrogen positions were located and refined isotropically. Atomic positional parameters and selected bond lengths and angles are presented in Tables 2 and 3, respectively.

Results and discussion

The hydrothermal reaction of $Na_2MOO_4 \cdot 2H_2O$, MoO₃, $H_2NCH_2CH_2NH_2 \cdot 2HCl$ and water yields colorless needles of $(H_3NCH_2CH_2NH_3)Mo_3O_{10}$ (1). As we and others have observed [7, 8], the identity of the cation is critical in the isolation of phases of a given composition and structure, a feature related to the role of the cations as templates for preparation of the solid.

^{*}Author to whom correspondence should be addressed.

TABLE 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients ($\mathring{A}^2 \times 10^3$)

TABLE 3. Selected bond lengths (Å) and angles (°) for 1

	<i>x</i>	у	z	$U_{\mathrm{eq}}{}^{\mathrm{a}}$
Mo(1)	1087(1)	9008(1)	5421(1)	10(1)
Mo(2)	4033(1)	10347(1)	3386(1)	10(1)
Mo(3)	7183(1)	9294(1)	2532(1)	12(1)
O(1)	131(3)	8656(2)	6923(3)	18(1)
O(2)	1317(3)	8000(2)	4456(3)	20(1)
O(3)	2221(3)	9712(2)	3441(2)	15(1)
O(4)	3447(3)	11310(2)	2332(3)	19(1)
O(5)	4938(3)	9617(2)	1814(2)	15(1)
O(6)	5612(3)	9197(2)	4639(2)	13(1)
O(7)	6819(3)	10724(2)	3483(2)	13(1)
O(8)	7204(3)	8107(2)	2452(3)	25(1)
O(9)	8071(3)	9640(2)	997(3)	23(1)
O(10)	9047(3)	9497(1)	4138(2)	13(1)
N(1)	6460(4)	11605(2)	514(3)	22(1)
N(2)	10337(4)	12191(3)	380(4)	27(1)
C(1)	7315(4)	12061(3)	-680(4)	21(1)
C(2)	9058(4)	11715(3)	-731(4)	24(1)

*Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

To illustrate the point, under identical condition, the substitution of NaCl for $H_2NCH_2CH_2NH_2 \cdot 2HCl$ yields the dimolybdate species $Na_2Mo_2O_7$ [2].

The IR spectrum of 1 in the 1000–500 cm⁻¹ range is quite complicated, an observation consistent with the presence of three structurally distinct molybdenum sites. The features in the 890–965 cm⁻¹ range are ascribed to ν (Mo=O), while the bands in the 700–862 cm⁻¹ region are most likely associated with ν (Mo–O–Mo) modes.

The fundamental structural motif of the anion of 1 may be described as a double chain of linked $\{MOO_6\}$ octahedra, as shown in Fig. 1. The metrical parameters associated with the three crystallographically independent molybdenum sites are unexceptional and exhibit the usual two short, two long, two intermediate Mo-O bond lengths [9].

As shown in Fig. 2, the $\{MoO_6\}$ polyhedra are linked in a complex pattern of edge-, corner- and face-sharing to produce the one-dimensional polymeric chains. Molybdenum sites Mo2 and Mo3 exhibit an uncommon face-sharing interaction, while the Mo1 octahedron is linked by edge-sharing to the Mo3 site and to an adjacent Mo1 site, and by corner-sharing to the Mo2 octahedra. As a consequence of this pattern of octahedral connectivities, the structure of 1 possesses terminal, doubly-bridging and triply-bridging oxo groups. Molybdenum centers Mo1 and Mo3 exhibit the common *cis*-dioxo arrangement of terminal oxo groups, while Mo2 has a single terminal oxo group.

The linkage of molybdenum octahedra in 1 is quite distinct from that previously reported for $(NH_4)_2Mo_3O_{10}$ [3] and $K_2Mo_3O_{10}$ [6]. As illustrated in Fig. 3, the

Mo1-O1	1.716(2)	O1H10	1.95(1)
Mo1-O2	1.717(2)	O2H5	2.09(1)
Mo1–O3	2.335(2)	O2H9	2.39(1)
Mo107	1.870(2)	O4H9	2.41(1)
Mo1-O10	1.997(2)	O5H7	1.96(1)
Mo1–O10a	2.203(2)	O6H8	2.17(1)
Mo2-O3	1.736(2)	O7H6	2.30(1)
Mo2O4	1.709(2)	O8H6	2.41(1)
Mo2-O5	1.977(2)		
Mo2-O6	2.289(2)		
Mo2–O6a	2.307(2)		
Mo207	1.864(2)		
Mo3-O5	1.895(2)		
Mo3-O6	2.417(2)		
Mo3O7	2.271(2)		
Mo3-O8	1.718(2)		
Mo3–O9	1.709(3)		
Mo3-O10	1.947(2)		
O1-Mo1-O2	103.4(1)	O4-Mo2-O5	98.4(1)
O1-Mo1-O3	171.2(1)	O4-Mo2-O6	162.2(1)
O1-Mo1-O7	97.4(1)	O4–Mo3O7	91.2(1)
O1-Mo1-O10	97.2(1)	O4–Mo2–O6a	103.0(1)
O1-Mo1-O10a	96.5(1)	O5-Mo2-O6	73.8(1)
O2Mo1-O3	84.8(1)	O5–Mo2–O7	72.2(1)
O2–Mo1–O7	106.4(1)	O5-Mo2-O6a	146.8(1)
O2-Mo1-O10	98.8(1)	O6–Mo2–O7	71.3(1)
O2–Mo1–O10a	159.2(1)	O6–Mo2–O6a	78.2(1)
O3-Mo1O7	83.2(1)	O7-Mo2-O6a	82.1(1)
O3-Mo1-O10	78.1(1)	O5-Mo3-O6	72.1(1)
O3-Mo1-O10a	75.0(1)	O5-Mo3-O7	74.5(1)
O7-Mo1-O10	146.9(1)	O5-Mo3-O8	104.3(1)
O7-Mo1-O10a	76.6(1)	O5-Mo3-O9	98.5(1)
O10-Mo1-O10a	72.4(1)	O5-Mo3-O10	144.5(1)
O3-Mo2-O4	106.2(1)	O6-Mo3-O2	69.9(1)
O3–Mo2–O5	97.9(1)	O6–Mo3–O8	89.1(1)
O3–Mo2–O6	90.9(1)	O6–Mo3–O9	165.2(1)
O3-Mo2-O7	161.3(1)	O6-Mo3-O10	82.8(1)
O3-Mo2-O6a	100.2(1)	O7-Mo3-O8	158.2(1)
O7-Mo3-O10	73.5(1)	O7-Mo3-O9	97.1(1)
O8-Mo3-O9	104.6(1)	O9-Mo3-O10	100.1(1)
O8-Mo3-O10	99.8(1)		

Fig. 1. A view of the structural motif of $\{[Mo_3O_{10}]^{2-}\}_{\infty}$ which consists of a double chain of linked $\{MoO_6\}$ octahedra. The atom labelling scheme is shown.

Fig. 2. A polyhedral representation of the structural core of $\{[Mo_3O_{10}]^{1-}\}_{\infty}$.

Fig. 3. A comparison of the distinct one-dimensional chains adopted by the anions of: (a) $K_2Mo_3O_{10}$, (b) $(NH_4)_2Mo_3O_{10}$, (c) $(H_3NCH_2CH_2NH_3)Mo_3O_{10}$.

structure of the anion of the former consists of double chains of exclusively edge-sharing octahedra, such that there are only terminal and triply-bridging oxo groups. In contrast, the latter contains edge-sharing $\{MoO_6\}$ octahedra and $\{MoO_5\}$ square pyramids.

There is no doubt that cations play a significant role in the isolation of the trimolybdate phases. There are number of significant contacts between the oxo groups of the { $[Mo_3O_{10}]^{2-}$ } chains and the hydrogen atoms

Fig. 4. A view of the environment of the $(H_3NCH_2CH_2NH_3)^{2+}$ cations.

associated with the nitrogen atoms of the ethylenediamminium cations. As illustrated in Fig. 4, the cations occupy channels formed by parallel stacking of three $\{[Mo_3O_{10}]^{2-}\}_{\infty}$ chains and exhibit strong hydrogen bonding to terminal and bridging oxo groups of the three chains.

Acknowledgement

This work was supported by NSF grant CHE9119910.

References

- 1 A.W. Armour, M.G.B. Drew and P.C.H. Mitchell, J. Chem. Soc., Dalton Trans., (1975) 1493.
- 2 M. Seleborg, Acta Chem. Scand., 21 (1967) 499.
- 3 K.-J. Range and A. Fässler, Acta Crystallogr., Sect. C, 46 (1990) 488.
- 4 H.-U. Kreusler, A. Förster and J. Fuchs, Z. Naturforsch., Teil B, 35 (1980) 242.
- 5 S.A. Hodorowicz and W. Lasocha, Cryst. Res. Technol., 23 (1988) K43.
- 6 B.M. Gatehouse and P. Leverett, J. Chem. Soc. A, (1968) 1399.
- 7 V. Soghomonian, Q. Chen, R.C. Haushalter, J. Zubieta and C.J. O'Connor, *Science*, 259 (1993) 1596.
- 8 R.C. Haushalter and L.A. Mundi, Chem. Mater., 4 (1992) 31.
- 9 M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983.