A Molecular Dihydrogen Moiety within Dimeric Chlorohydrido(tertiary phosphine)ruthenium Complexes

CASHMAN HAMPTON, THOMAS W. DEKLEVA, BRIAN R. JAMES and WILLIAM R. CULLEN

Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1 Y6, Canada

(Received December 1, 1987)

Three years ago in the centennial issue of *Inorganica Chimica Acta,* ongoing work from this Department was reported on chlorohydridoruthenium(I1) complexes containing two tertiary phosphines per Ru. These are key species within hydrogenation systems catalyzed by, for example, $RuHCl(PPh₃)$ [1]. The dimeric complexes RuH_2XL_2]₂ (X = Cl, Br; L = PPh₃, AsPh₃ and Ptol₃, where tol = p-tolyl), were synthesized and 'fully characterized' by elemental analyses, ¹H and ³¹P{¹H} NMR, a range of chemical reactions and, in the case of $\left[\text{RuH}_{2}\text{Cl}(\text{Ptol}_{3})_{2}\right]_{2}$ **(l),** a crystal structure determination.

The crystallographic analysis did not locate the hydrogen ligands, but based on the structural data

Fig. 1. Diagrammatic crystal structure of $\left[\text{RuH}_2\text{Cl}(\text{Ptol}_3)_2\right]_2$ **(1)** as given in ref. 1; the H(2) atoms are now shown to bc a coordinated η^2 -H₂.

and the NMR data, especially three high-field 'H signals measured in CD_2Cl_2 at -95°C , the positions of the hydrogens were shown as in Fig. 1 [I]: a bridging hydride H(l), one terminal hydride H(3) on one Ru, and two terminal hydrides H(2) on the other Ru. Relaxation measurements (T_1) on this complex now show that the $H(2)$ atoms are in fact a coordinated η^2 -H₂ moiety, and the species is a further example within a growing series of molecular hydrogen complexes [2], these being first reported in 1984 [3].

The upfield resonances of 1 at -95° C, of relative intensities 1:2:1, seen at δ -9.27 (dd, 72 Hz, 4 Hz), -11.65 ($v_{1/2}$ = 120 Hz) and -19.15 (t, 28 Hz), are assigned, as discussed previously $[1]$, to $H(1)$, $H(2)$ and H(3), respectively (Fig. 2). Application of the inversion recovery method, as described by Crabtree et al. $[2]$, to CD_2Cl_2 solutions of 1 using a Varian 300 MHz instrument provides data of the kind shown in Fig. 3. The T_1 values at -95° C are 123(±11), 44(\pm 2) and 350(\pm 40) ms, respectively, for $H(1)$, H(2) and H(3). The short relaxation time measured for H(2) is typical of that found for η^2 -H₂ [2]. Warming the solution reveals the usual exchange [2] between the classical hydrides and the η^2 -hydrogens (above -40 °C, a weighted average single resonance is observed [1]); at -64 °C, the T_1 values (ms) become comparable: δ -9.2 (41 ± 1), -11.7 (40.0 ± 0.5), -19.0 (47 \pm 2). The exchange process, discussed in the earlier paper (eqn. 17 in ref. 1), is pictured much as before but with η^2 -H₂ forming alternately at Ru(1) and $Ru(2)$.

Correspondence in ${}^{1}H$ and ${}^{3}P$ NMR data (but more limited because of solubility problems) implies η^2 -H₂ moieties within the other $\left[\text{RuH}_2 \text{XL}_2\right]_2$ compounds $(X = Cl, Br; L = PPh₃, AsPh₃)$. The reactions of $[RuH₂XL₂]₂$ with L, CO, and dipy, to give Ru- HXL_3 , RuHCl(CO)₂L₂ and RuHCl(dipy)L₂, respectively, in each case with liberation of 1 mole H_2 per

Fig. 2. High-field region ¹H NMR spectrum (300 MHz) of complex 1 in CD₂Cl₂ at various temperatures (expanded H(1) and H(3) resonances at -95 °C are shown in Fig. 5 of ref. 1).

0020-1693/88/\$3.50 **Delet Elsevier Sequoia/Printed in Switzerland**

Fig. 3. Inversion-recovery spectra (high-field ¹H NMR, 300 MHz) of complex 1 in CD₂Cl₂ at -84 °C (cf. Fig. 2). The η^2 -H₂ hydrogens are seen to relax more quickly than the terminal and bridging hydrides.

reactant dimer, presumably proceed via predissociation of the η^2 -H₂; similar dissociation has been invoked for reactions of $Ru(H)₂(\eta^2-H_2)(PPh_3)$ [2, 4]. Kinetic data on the reaction of $Ptol₃$ with complex **1,** which showed a direct inverse dependence on $H₂$, yielded information on the equilibrium constant for the predissociation [11. **1** is stable in solution under 1 atm H_2 , but loses H_2 slowly under, for example, an argon atmosphere. The lability of the η^2 -H₂ seems comparable to that of the η^2 -H₂ in $RuH(\eta^2-H_2)[Ph_2P(CH_2)_2PPh_2]_2^+$ [5].

It is worth noting that on subjecting $RuHCl(Ptol₃)₃$ to 1 atm H_2 in toluene-d₈, the high-field ¹H NMR quartet (δ - 16.8, $J(PH)$ = 26 Hz) of the hydride is broadened and is accompanied by development of a weak broad signal at $\delta = 12.8$ that corresponds to the averaged ambient temperature high-field signal of complex 1. Similar broadening of the quartet hydride signal of $RuHCI(PPh₃)₃$ has been noted by others [6] and ourselves, but there is no observable, averaged signal of $Ru_2H_4Cl_2(PPh_3)_4$, the triphenylphosphine analogue of 1; it may just be too weak to be detected. The dinuclear η^2 -H₂ species could play a role in the extremely rapid H_2/D_2 exchange process observed in the presence of $RuHCI(PPh₃)₃$, and in the exchange process that leads to broadening of the highfield quartets [6].

In conclusion, the complex $[RuH_2Cl(Ptol_3)_2]_2$ is now reformulated as $(ิPtol₃)₂RuH(μ -H)(μ -Cl)₂Ru(η ² H_2$)(Ptol₃)₂, and to our knowledge is the first dinuclear species reported to contain a molecular dihydrogen ligand [7]*. We await more definitive structural data regarding the nature of the metalmetal interaction, and the formal oxidation states of the metals.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support (operating grants to B.R.J., W.R.C.) and Johnson, Matthey, Ltd. for a loan of ruthenium.

References

- 1 T. W. Dekleva, I. S. Thorburn and B. R. James, *Inorg. Chim. Acta, 100,49 (1985).*
- *2* R. H. Crabtree, M. Lavin and L. Bonneviot,J. *Am. Chem. Sot., 108,4032* (1986).
- 3 G. J. Kubas, R. R. Ryan, B. 1. Swanson, P. J. Verpamini and J. J. Wasserman, *J. Am. Chem. Sot., 106, 45* 1 (1984); K. W. Zilm, R. A. Merrill, M. W. Kummer and G. J. Kubas, *J. Am. Chem. Soc., 108*, 7837 (1986).
- 4 T. V. Ashworth and E. Singleton, *J. Chern. Sot, Chem.* Commun.. 705 (1976).
- 5 R. H. Morris, J. F. Sawyer, M. Shiralian and J. D. Zubkowski, *J. Am.* Chem. Sot., 107, 5581 (1985); M. Bautista, K. A. Earl, R. H. Morris and A. Sella, J. *Am. Chem. Soc., 109, 3780 (1987).*
- 6 G. Strathdee and R. Given, *Can. J.* Chem., 53, 106 (1975); A. M. Stolzenberg and E. L. Muetterties, *Organometallics. 4, 1739 (1985).*
- *7* R. H. Morris and B. N. Chaudret, personal communication.

^{*}A complex analogous to **1** but with the bridging chlorines replaced by hydrogens has recently been synthesized.