Complexes of Ruthenium with 1,3-Bis(dimethylphosphino)propane

MARIO BRESSAN and ANTONINO MORVILLO

Centro di Studio sulla Stabilità e Reattività dei Composti di *Coordinazione, C.N.R.. Dipartimento di Chimica Inorganica. Metallorganica e Analitica, University of'Padua, via Marzolo I, 3.5131 Padua, Italy*

(Received March 2, 1987)

Ruthenium(l1) complexes containing bidentate ligands generally give rise to 6-coordinate octahedral structures $[RuX_2(LL)_2]$. However, as we previously found $[1, 2]$ and McAuliffe *et al.* more recently confirmed [3], with a number of ligands, namely the diphosphines $Ph_2P(CH_2)$, PRR' (R, R' = Ph, Me) |1, 3] and the mixed ligand $Ph_2P(CH_2)_2(2-Pyr)$ (PPy) [2], stable 5-coordinate $[RuX(LL)₂]$ ⁺ complexes can be easily prepared by dissociation of an anionic ligand X^- from trans-[Ru $X_2(LL)_2$]. Osmium(II) behaves quite similarly, but in this case only the diphosphine dpp $(R=R'=Ph)$ has been investigated [4]. It is interesting to recall that with related ligands, forming chelate rings either larger or smaller than the 6 membered ones, the conventional octahedral complexes of both ruthenium(I1) and osmium(I1) are definitely inert towards the dissociation [1].

We now report on the complexes formed by ruthenium(II) with the diphosphine Me₂P(CH₂)₃. PMe, (dmp), which also gives 6-membered chelate rings.

trans-[RuX₂(dmp)₂] complexes are conveniently prepared by reacting $[RuX_2(PPh_3)_3]$ and a slight excess of dmp in benzene; the direct synthesis from $RuCl₃$ and the diphosphine gave in fact low yields, as usual with strongly basic phosphino-ligands [S]. The complexes are diamagnetic and nonelectrolytes (1,2 dichloroethane) and the *trans*-stereochemistry is inferred from both the visible spectra, which exhibit the diagnostic absorptions, around 23 000 and 28 000 cm⁻¹, due to the d-d ${}^{1}A_{1g} \leftarrow {}^{1}E_{g}$ and $\leftarrow {}^{1}A_{2g}$ transitions (D_{4h} symmetry), and the ³¹P NMR spectra, where a single signal is observed.

Coordinatively unsaturated $\left[\text{RuX(dpm)_2}\right]^+$ species have not been isolated as such, although a number of cationic, 6-coordinate complexes of general formulation $[RuX(L)(dmp)_2]^+$ could be obtained, likely to be formed by addition of a sixth ligand L to the 5-coordinate cation, in equilibrium with the trans- $\left[\text{RuX}_{2}(\text{dmp})_{2}\right]$ complexes in polar solvents (Scheme 1).

In the presence of water, a white product is isolated, whose elemental analysis suggests a formulation $\left[\text{RuX}(H_2O)(\text{dmp})_2\right]$ BPh₄ (strong absorptions in

 $[RuX(H,0)(LL)$ ⁺

 \lceil RuX (CH₃CN)(LL)₂⁺

Scheme 1. $LL = dmp$, $X = Cl$, Br. All the reactions in ethanol (or methanol) and in the presence of: (a) NH_4PF_6 or HBF_4 ; (b) $NaBPh₄$ or $NaBF₄$; (c) $NaBPh₄$ and $H₂O$, 20% ; (d) NaBPh₄ and CH₃CN, 20% .

the $3400 - 3500$ and $1600 - 1700$ cm⁻¹ regions). Significantly, by carrying out the same reaction in the presence of excess acetonitrile, the colorless [RuCl- $(CH_3CN)(dmp)_2$ ⁺ adduct is obtained ($\nu(CN) = 2340$ cm^{-1}). Unfortunately, both the aquo and acetonitrile derivatives are rather unstable when dissolved, thus preventing further purifications to be carried out.

In anhydrous ethanol, the trans- $\left[\text{RuX}_{2}(\text{dmp})_{2}\right]$ derivatives do not afford again the desired 5 coordinate species, even in the presence of large excesses of NaBF₄ or NaBPh₄^{*}. Instead, stable monocarbonyl-derivatives trans-[RuX(CO)(dmp)₂]⁺ are formed, likely through the conventional decarbonylation of a coordinated alcohol (or alcoholate) molecule [6].

 $\lfloor RuX(L)_4 \rfloor^+ \rightleftarrows \lfloor RuX(RCH_2O)(L)_4 \rfloor \longrightarrow$

 $[RuX(CO)(L)₄]⁺$ (1)

In conclusion, the distinctly different steric requirements of the diphosphine dmp, with respect to other related ligands, *i.e.* containing the two donor atoms separated by four bonds, apparently make the vacant coordination site in the $\left[\text{RuX(LL)}_{2}\right]^{+}$ cations more accessible to a sixth ligand (water or the solvent alcohol itself), to such an extent that the coordinatively unsaturated species could never be isolated. It may be noted that the *trans*-[RuX₂(LL)₂] complexes with the related diphosphine $Me₂P(CH₂)₂PMe₂$ are stable towards the dissociation, even if evidences are

^{*}When *trans*-[RuCl₂(dmp)₂] is stirred in ethanolic NH_4PF_6 , quantitative formation of $[RuX_2(dmp)_2]PF_6$ occurs. The same product could be obtained, in shorter times, in the presence of strong acids, such as HBF₄ or $HCIO₄$, thus indicating that $H⁺$ is the actual oxidant.

reported of formation of ionic species in aqueous solutions, tentatively formulated as aqua-complexes $\lceil RuX(H_2O)(dme)_2 \rceil$ [5].

Experimental

IR and visible spectra were recorded on a Perkin-Elmer 781 and Lambda 5 respectively and NMR spectra on a Jeol FX 90 O instrument (positive δ values, ppm, downfields 85% H₃PO₄). The ligand dmp was prepared by literature methods [7]. All preparations were made under nitrogen.

[RuX2 (dmp), / (X = Cl, Br)

Dmp (1.8 ml, 11 mmol) was added to a benzene solution of $[RuX_2(PPh_3)_3]$ (5 mmol) and the mixture stirred at room temperature for 2 h. By adding hexane yellow crystals separated (recrystallization from CH2C12-hexane, yield 60%). *Anal.* Found (calc. for $C_{14}H_{36}Cl_2P_4Ru$): C, 33.6 (33.61); H, 7.7 (7.25) ; Cl, 14.3 (14.17) %. Found (calc. for C₁₄H₃₆- Br_2P_4Ru : C, 28.3 (28.54); H, 6.5 (6.16)%. $\lambda_{max}(\epsilon_M)$ in 1,2-C₂H₄Cl₂: 23 400 (125) and 28 000 (sh) cm⁻¹ (Cl); 22 500 (115) and 28 000 (sh) cm⁻¹ (Br). $\delta(^{31}P)$ in CD_2Cl_2 : -9.02 (s) (Cl); -11.24 (s) (Br).

$|Rul_2/dmp|_2|$

 $\lceil RuX_2(dmp)_2 \rceil$ and LiI (100-fold excess) were refluxed in ethanol for 48 h under nitrogen. The mixture is evaporated to dryness and extracted with benzene. By addition of hexane, a brown powder separates (yield 10%). Anal. Found (calc. for C₁₄H₃₆. I_2P_4Ru : C, 24.4 (24.61); H, 5.3 (5.31)%. λ_{max} in Nujol: 22 500 (115) and 28 000 (sh) cm⁻¹.

$IRuCl₂(dmp)₂/PF₆$

 $\left[\text{RuCl}_{2}(\text{dmp})_{2}\right]$ and $\text{NH}_{4}\text{PF}_{6}$ (20-fold excess) were stirred overnight at room temperature, in ethanol, yielding green crystals (80%). Anal. Found (calc. for $C_{14}H_{36}Cl_2F_6P_5Ru$: C, 26.9 (26.06); H, 6.0 (5.62); Cl, 10.8 (10.99)%. μ_{eff} (20 °C): 2.1 BM.

$[RuX(CO/(dmp)₂/BPh₄/X = Cl, Br)]$

 $\lceil \text{RuX}_2(\text{dmp})_2 \rceil$ and NaBPh₄ (10-fold excess) were refluxed in ethanol under nitrogen for 5 h, yielding a white product (recrystallization from $CH₂Cl₂$ ethanol, yield 70%). *Anal*. Found (calc. for $C_{39}H_{56}$. BClOP₄Ru): C, 57.9 (57.68); H, 6.7 (6.95)%. Found (calc. for $C_{39}H_{56}BBrOP_4Ru$): C, 54.5 (54.68); H, 6.6 (6.59)%. μ (CO) in Nujol: 1995 cm⁻¹. δ (³¹P) in $CD_2Cl_2: -17.4$ (s) (Cl); -19.6 (s) (Br).

Acknowledgement

The authors wish to thank Mr. A. Ravazzolo. C.N.R., for helpful assistance.

References

- (a) M. Bressan and P. Rigo, Inorg. Chew., 14, 2286 (1975): (b) G. Zotti. G. Pilloni. M. Bressan and M. Marteili, *J. kectroanal. Chem.. 75. 607 (1 977).*
- M. Bressan and P. Rip, *J. Inorg. Nucl. Chem.. 38, 592 (1976).*
- J. C. Briggs, C. McAuliffe and G. Dyer, *J. Chem Sec., Dalton Trans., 423* (1984).
- (a) M. Bressan, R. Ettore and P. Rip). Inorg. *Chim. Acta. 30. L57 (1977);* (b) G. Zotti. G. Pilloni, M. Brcssan and M. Martelli, *Inorg. Chim. Acta, 30, L3* 1 1 (1978).
- 5 J. Chatt and R. G. Hayter, *J. Chem. Soc.*, 896, 1772, 2605 (1961);6017 (1963).
- J. Chatt, B. L. Shaw and A. F. Field, *J. Chem. Sot.,* 3466 (1964).
- 7 G. Kardosky, B. R. Cook, J. Cloyd, Jr. and D. W. Meek, *Inorg. Syzth., 14, 14* (1973).