The Synthesis and X-ray Structure of a Novel Monocyclopentadienyluranium(IV) Chloride $[UCp'''Cl_2(THF)(\mu-Cl)_2Li(THF)_2]$ $[Cp''' = \eta-C_5H_2(SiMe_3)_3-1,2,4]*$

MICHAEL A. EDELMAN, MICHAEL F. LAPPERT**

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

JERRY L. ATWOOD** and HONGMING ZHANG

Department of Chemistry, University of Alabama, Ala. 35486, U.S.A.

We report the first use of the tris(1,2,4-trimethylsilyl)cyclopentadienyl ligand $\eta \cdot \overline{C}_5 H_2(SiMe_3)_3 \cdot 1,2,4$ (abbreviated as $\overline{C}p'''$) in f-element chemistry. Thus we have obtained the novel crystalline complex $[UCp'''Cl_2(THF)(\mu-Cl)_2 Li(THF)_2]$ from UCl₄ and LiCp''' in tetrahydrofuran. The X-ray structure shows the compound to have an approximately octahedral environment about U, four equatorial Cl⁻ ligands, *trans*-axial $\overline{C}p'''$ and THF ligands, and with two of the Cl⁻ ligands bridging to Li; the approximately tetrahedral coordination geometry around Li is completed by two terminal THF ligands.

Experimental

Uranium(IV) chloride (4.49 g, 11.82 mmol) was added to a stirred solution of LiCp''' (prepared in essentially quantitative yield from Cp"H [1] and $LiBu^n$ in n-C₆H₁₄) (3.44 g, 11.95 mmol) in tetrahydrofuran (250 cm³) at 20 °C, producing an olivegreen solution. This was stirred for 12 h at 20 °C, whereafter the volatiles were removed in vacuo to produce an olive-green solid. The latter was extracted into toluene (ca. 100 cm³); the extract was filtered, concentrated (to ca. 50 cm³), and cooled (-30 ℃) to yield green needles of [UCp^{'''}Cl₂(THF)- $(\mu$ -Cl)₂Li(THF)₂] (6.26 g, 60%). Anal. Calc. for $C_{26}H_{53}Cl_4O_3Si_3LiU$ (*M* = 884.8): Cl, 16.1. Found: Cl, 16.5%. ¹H NMR chemical shifts (δ in ppm, relative to external SiMe₄, 360 MHz, d₈-toluene, 305 K): δ $-13.62, -12.52 (U-OC_4H_8); -5.2, -4.1 [(SiMe_3)_2];$ -1.78, 1.56 [Li(OC₄H₈)₂]; 0.82 (SiMe₃); 14.59, 64.79 (C₅ H_2). ⁷Li NMR (δ in ppm, relative to external aq. Li[NO₃], 139.97 MHz, d₈-toluene): -20.9

ppm. (Spectra taken at other temperatures are not yet fully analysed, but show that kinetic processes are observable.)

Crystals $(0.10 \times 0.15 \times 0.08 \text{ mm})$ suitable for an X-ray structure determination were mounted in 0.2 mm Lindemann tubes and sealed under argon.

 $C_{26}H_{53}Cl_4O_3Si_3LiU$, M = 884.75, a = 11.976(5), b = 20.013(6), c = 33.411(10) Å, $\beta = 99.66(3)^\circ$, V = 7954.19 Å³, space group C2/c, Z = 8, $D_c = 1.48$ g cm⁻³.

Diffraction intensities were collected on an Enraf-Nonius CAD-4 diffractometer with Mo K α radiation ($\lambda = 0.71069$ Å) at 305 K, 2 θ range 2-44°. The structure solution was based on 2087 reflections having $I > 3\sigma(I)$. The final R value was 0.033 (R' =0.036) with GOF = 0.92.

Results and Discussion

We have used the η -1,3-bis(trimethylsilyl)cyclopentadienyl ligand η - $\overline{C}_5H_3(SiMe_3)_2$ -1,3 (abbreviated as $\overline{C}p''$) quite extensively, originally in 4f element chemistry [2], but also in connection with bis-Cp''and tris-Cp''-complexes of U(IV), U(III), Th(IV), and Th(III) [3]. The $\overline{C}p''$ ligand has provided a route to numerous hydrocarbon-soluble and volatile complexes, which have been monomers or dimers; for a brief review of such thorium and uranium chemistry, see ref. 4.

We have now turned to the even more highly substituted ligand $\eta \cdot \overline{C}_5 H_2(SiMe_3)_3 \cdot 1, 2, 4$ ($\overline{C}p'''$), which was expected to provide lipophilic complexes even for monocyclopentadienylmetal complexes. We report herein the first such compound (1), prepared as shown in eqn. (1), which is clearly to be a forerunner of an extensive family of novel complexes.

$$UCl_4 + LiCp''' \xrightarrow{THF} [UCp'''Cl_2(THF)(\mu-Cl)_2Li(THF)_2]$$

$$1 \qquad (1)$$

There are three previous examples of X-ray characterized monocyclopentadienyluranium(IV) chlorides: $[U(\eta - C_5 H_4 Me)Cl_3(THF)_2]$ [5], $[UCpCl_3(L)_2]$, L = OP(NMe₂)₃ [6] or L = OPPh₃ [7].

Complex 1, like the above mentioned $[UCp^*Cl_3-(L)_2]$ species, has a coordination geometry around U which approximates to being distorted octahedral with a $\overline{C}p^*$ and an L ligand [L = THF for 1] occupying mutually *trans*-positions. In complex 1 the equatorial sites are occupied by four Cl⁻ ligands (bent away from the $\overline{C}p'''$ ligand, (Cent-U-Cl) 102°), one *cis*-pair being terminal and the other bridging to Li. Four-coordination about lithium is completed by two terminal THF ligands. The molecular structure and atom numbering scheme for complex 1

© Elsevier Sequoia/Printed in Switzerland

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6–10, 1987.

^{**}Authors to whom correspondence should be addressed.

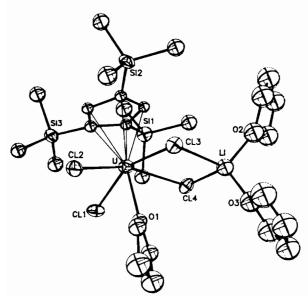


Fig. 1. The molecular structure and atom numbering scheme for $[UCp'''Cl_2(THF)(\mu-Cl)_2Li(THF)_2]$ $[Cp''' = \eta-C_5H_2-(SiMe_3)_3-1,2,4]$ (1).

shown in Fig. 1 and selected important parameters are listed in Table I.

The THFs bonded to Li do not interact with the hydrogens of the SiMe₃ groups of $\overline{Cp}^{"'}$. However, there is 'gear-meshing' of (a) the H atoms of the 1- and 2-SiMe₃ groups, and (b) the H atoms of the 4-SiMe₃ group and the bridging Cl⁻ ligands.

References

- 1 P. Jutzi and R. Sauer, J. Organomet. Chem., 50, C29 (1973).
- 2 M. F. Lappert, A. Singh, J. L. Atwood and W. E. Hunter,

TABLE I. Some Important Bond Lengths (Å) and Angles (°) in $[UCp''Cl_2(THF)(\mu-Cl)_2Li(THF)_2]$ $[Cp''' = \eta-C_5H_2-(SiMe_3)_3-1,2,4]$

Bond lengths (Å)					
U-O(1)	2.449(9)	UC	2.69-	-2.76
Cl(1)-U	2.606(4)	U-Cent	2.45	
Cl(2)–U	2.606(4)	LiCl(3)	2.39(3)
Cl(3)-U	2.734(4)	Li-Cl(4)	2.40(3)
Cl(4)–U	2.726(4)	Li-O(2)	1.90(4)
			LiC(3)	1.84(4)
Bond angles (°) [3 Si atoms 0.36–0.41 Å out of η -C ₅ plane]					
Cent-U-Cl	(1)	104	Cl(1)-U-	Cl(2)	91.4(1)
Cent-U-Cl	(2)	101	Cl(1)-U-	CI(3)	154.1(1)
Cent-U-Cl	(3)	102	Cl(1)-U-	Cl(4)	88.8(1)
Cent-U-Cl	(4)	103	Cl(3)U	CI(4)	79.3(1)
Cent-U-O	(1)	178	Cl(2)-U-	CI(3)	90.3(1)
			Cl(2)-U-	Cl(4)	155.4(2)
Cl(1)-U-O	(1)	78.6(3)	O(2)-Li-	O(3)	110(2)
Cl(2)-U-O	(1)	78.4(3)	Cl(3)-Li-	CI(4)	93(1)
Cl(3)-U-O	(1)	76.4(3)			
Cl(4)UO	(1)	77.5(3)			

J. Chem. Soc., Chem. Commun., 1190 (1981); P. B. Hitchcock, M. F. Lappert and R. G. Smith, Inorg. Chim. Acta, 139, 183 (1987).

- 3 P. C. Blake, M. F. Lappert, J. L. Atwood and H. Zhang, J. Chem. Soc., Chem. Commun., 1394 (1986), and refs. therein.
- 4 P. C. Blake, M. F. Lappert, R. G. Taylor, J. L. Atwood and H. Zhang, *Inorg. Chim. Acta*, 139, 13 (1987).
- 5 R. D. Ernst, W. J. Kennelly, C. S. Day, V. W. Day and T. J. Marks, J. Am. Chem. Soc., 101, 2656 (1979).
- 6 G. Bombieri, G. DePaoli, A. DelPra and K. W. Bagnall, Inorg. Nucl. Chem. Lett., 14, 359 (1978).
- 7 F. Benetollo, G. Bombieri, G. DePaoli, P. Zanella and K. W. Bagnall, *Abstracts, IX Int. Conf. Organomet. Chem.*, Dijon, September, 1979, p. 63.