Optical Properties of U⁴⁺ in α-ThBr₄

E. SIMONI[†], S. HUBERT and M. GENET

Laboratoire de Radiochimie, Institut de Physique Nucléaire, B.P. No 1, 91406 Orsay Cédex, France

Thorium tetrahalides (X = Cl, Br) have two polymorphic forms [1] with a transformation temperature of 426 °C for the tetrabromide and 405 °C for the tetrachloride. While the space group symmetry of the high temperature form β -ThBr₄ is I4₁/amd, in which Th^{4+} is at a site of D_{2d} symmetry (above 90 K), the low temperature form α -ThBr₄ has a scheelite structure $I4_1/a$ in which the site symmetry of Th⁴⁺ is S₄. In contrast to β -ThBr₄, which undergoes a phase transition below 90 K [2], we verified by Raman scattering and nuclear quadrupole resonance that α -ThBr₄ keeps the same structure from room temperature down to 4.2 K.

Recently, a single crystal of α -ThBr₄ doped with U⁴⁺ has been grown and spectroscopic properties of tetravalent uranium have been studied using absorption and emission measurements and Zeeman effect studies. Numerous and very strong fluorescences from U⁴⁺ in the visible, as well as in the near-infrared and infrared, have been observed for the first time [3] and parameters describing spin-orbit and crystal-field interactions were adjusted with 30 levels using a leastsquares minimization procedure in the D_{2d} point group approximation.

Experimental

Samples used in this study were obtained by the Bridgman method as single crystals of α -ThBr₄ doped with 20 ppm of U⁴⁺. As it is difficult to get the α -form by this method, it was also possible to transform U^{4+} doped β -ThBr₄ single crystals to the α -form by heating at 400 °C for several days. In this way the new form becomes polycrystalline.

The absorption and emission spectra in the visible and infrared were measured at different temperatures ranging from 4.2 K to 300 K, with the crystal excited by the full light emission produced by a 24 W iodine lamp, using a Jobin-Yvon HR 1000 high resolution spectrometer.

Zeeman splittings were recorded in the visible region at 4.2 K with the crystal in a magnetic field of 6 T.

Results and Discussion

Figure 1 shows the absorption and emission spectra of tetravalent uranium in α -ThBr₄ in the visible and IR region at 4.2 K. Since the absorption lines were clearly polarized, we did not attempt to observe any polarization on the emission lines. In contrast to β -ThBr₄/U⁴⁺, which is incommensurate below 90 K [4], the absorption lines in α -ThBr₄/U⁴⁺ are very sharp and some of them present phonon sideband structure on the high energy side below 200 cm^{-1} , which indicates strong coupling between the electronic and vibronic states, as in the d elements. The spectra have been interpreted under the assumption that D_{2d} is a good approximation for S_4 symmetry and that the ground state is Γ_4 as for U^{4+} in β -ThBr₄ [5]. From the number of lines observed for π and σ polarization, compared to the predicted number of lines using the electric dipole selection rules in D_{2d} and S_4 symmetry, we assumed that D_{2d} is a good approximation [3]. Furthermore, the transition $\Gamma_4 \rightarrow \Gamma_2$, forbidden in D_{2d} symmetry and allowed in S_4 symmetry, particularly the ${}^{3}P_{1}(\Gamma_{2})$ level, is not observed in the π absorption spectra. By comparing the spectra with those of U^{4+} in β -ThBr₄, most of the lines could be assigned as $\Gamma_4 \rightarrow \Gamma_1$ transitions for π polarization and $\Gamma_4 \rightarrow \Gamma_5$ transitions for σ polarization. The absorption and emission level assignment has been described elsewhere [3]. The U^{4+}/α -ThBr₄ spectrum at higher temperature could be interpreted by absorption from a level at 110 cm^{-1} above the ground state and all the intense emission lines observed could be assigned as transitions coming from excited levels to ³H₄ Stark levels which we calculated to be at 110, 473, 623 and 830 cm⁻¹, the first and the last one being assigned as the Γ_5 level. The Zeeman experiments permit clear observation of the splitting of the ${}^{3}P_{1}$ (Γ_{5}) level and the ${}^{3}H_{4}$ (Γ_{5}) level at 110 cm⁻¹.

30 levels were fitted by simultaneous diagonalization of the free ion H_0 and crystal field Hamiltonian \mathcal{H}_{∞} describing the energy levels of U⁴⁺ in D_{2d} symmetry. H_o is characterized by the parameters of interelectronic repulsion F^k (k = 2, 4, 6), spin-orbit coupling ζ , configuration interaction α , β , γ , and additional parameters P^k (k = 2, 4, 6) and M_{α}^k (k = 2, 4, 6)0, 2, 4) taking into account finer effects. \mathcal{H}_{cc} is parameterized by the crystal field parameters B_0^2 ,

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6–10, 1987. [†]Author to whom correspondence should be addressed.

Fig. 1. Absorption and emission spectra of U^{4+}/α -ThBr₄ in the visible and infrared region at 4.2 K.

 B_0^4 , B_4^4 , B_0^6 and B_4^6 . Fitting the experimental levels with the parameters obtained for β -ThBr₄/U⁴⁺ gave a large r.m.s. deviation for α -ThBr₄/U⁴⁺. Only $B_0^2 \sim$ -400 cm^{-1} gave the correct separation between the ${}^{3}P_{1} \Gamma_{2}$ and Γ_{5} levels. With this B_{0}^{2} value, we tried to fit separately the Γ_1 and Γ_5 levels. Finally, the best fit for the 30 levels together was obtained with the starting value calculated with the Γ_1 levels. Our final analysis based upon 30 assigned levels led to a r.m.s. deviation of 77 cm⁻¹. The best fit parameters are listed in Table I along with those of β -ThBr₄:U⁴⁺. Compared with the spectroscopic parameters obtained for U^{4+} in β -ThBr₄ [5] and ThSiO₄ [6], the calculated parameters of U^{4+}/α -ThBr₄ are very different, particularly B_0^2 which is smaller and the sign of B_0^4 which is negative. If the r.m.s. deviation is not as good as for β -ThBr₄, the crystal field parameters are however calculated with an error of about 10%, except for B_0^6 which is determined at 20%.

Tha Auzel parameter [7] N_v can be introduced to give a relative measurement of the crystal field.

$$\frac{N_v}{\sqrt{(4\pi)}} = \left(\sum_{k, q} \frac{1}{2k+1} (B_q^k)^2\right)^{1/2}$$

270

Although the parameters are very different from the β -form, the crystal field strength has the same order of magnitude. Moreover, a marked decrease in the F^{k} parameters, especially for F^{4} , is observed.

Our results can be compared to those calculated by the covalo-electrostatic method [8] (Table II).

The calculated crystal field parameters are different for the two forms α - and β -ThBr₄. For U⁴⁺ in α -ThBr₄, the main discrepancy occurs for B_0^4 , while in β -ThBr₄ it is for B_0^6 . Although the general structure of α -ThBr₄ is quite similar to that of β -ThBr₄, the major difference between the two forms is the relative orientation of the coordination polyhedra within the structure. In the β -form, the axes of the polyhedron lie in the (100) planes of the unit cell, while in the α -structure the polyhedron has been rotated about 45° , the c axis and the polyhedron axes lying somewhat outside the (110) planes. This rotation allows for a more efficient packing of the Br⁻ atoms in the α -form. Moreover, the metal-ligand distances are approximately all the same for α -ThBr₄, while there are two different Th-Br bond distances for β -ThBr₄. The angles in the polyhedra are also different for both forms. This can explain the E. Simoni et al.

TABLE I. Spectroscopic Parameters for U⁴⁺ in α -ThBr₄ in Comparison with those of β -ThBr₄ and ThSiO₄

Spectroscopic ^a parameters	a-ThBr4:U ⁴⁺	β-ThBr4:U ^{4+ b}	ThSiO4:U ^{4+ c}
F^2	41529 (158)	42253 (127)	43110 (245)
F^4	36114 (486)	40458 (489)	40929 (199)
F^{6}	23953 (415)	25881 (383)	23834 (639)
F^{4}/F^{2}	0.87	0.96	0.95
F^{6}/F^{2}	0.57	0.61	0.55
5	1753 (7)	1783 (7)	1840 (2)
α	32 (1)	31 (1)	32.3 (0.4)
β	-644 (144)	- 644 (75)	-663 (144)
γ	1200	1200	1200
B ² 0	-382 (73)	-1096 (80)	-1003 (127)
B_0^4	- 3262 (197)	1316 (146)	1147 (281)
B_4^4	-1734 (164)	- 2230 (85)	-2698 (251)
B ⁶ 0	-851 (334)	- 3170 (379)	- 2889 (557)
B 4	-1828 (163)	686 (246)	- 208 (333)
r.m.s.	77	36	71
N'_v	1565	1543	1617

^aThe M^{k} and P^{k} values were fixed: $M^{0} = 0.99$, $M^{2} = 0.55$, $M^{4} = 0.38$; $P^{2} = P^{4} = P^{6} = 500$. ^bFrom ref. 5. ^cFrom ref. 6.

discrepancy in the values of the spectroscopic parameters for U⁴⁺ between α - and β -ThBr₄ and, in particular, of the crystal field parameters, which are found to be alike in the calculated values, taking into account the covalo-electrostatic method.

Acknowledgements

We wish to thank M. Faucher and D. Garcia for ab initio crystal field parameter calculations and

TABLE II. Calculated and Experimental Crystal Field Parameters of U^{4+} in α and β -ThBr₄ (cm⁻¹)

	a-ThBr4		β-ThBr ₄	
	Covalo- electrostatic method ^a	Experimental	Covalo- electrostatic method ^a	Experimental
B_0^2	_44	-382	- 594	1096
B_{0}^{4}	-356	- 3262	1298	1316
B4	-1783	-1734	-2527	-2230
B_{0}^{6}	-11	-851	- 388	- 3170
B 4	~ 1040	-1828	145	686

^aFrom ref. 8.

N. Edelstein for providing us with the matrix elements and least-squares program.

References

- 1 J. T. Mason, M. C. Jha, D. M. Bailey and P. Chiotti, J. Less-Common Met., 35, 331 (1974).
- 2 S. Hubert, P. Delamoye, S. Lefrant, M. Lepostollec and M. Hussonnois, J. Solid State Chem., 36, 36 (1981).
- 3 S. Hubert, E. Simoni and M. Genet, J. Less-Common Met., 122, 81 (1986).
- 4 L. Bernard, R. Currat, P. Delamoye, C. M. E. Zeyen, S. Hubert and R. de Kouchkovsky, J. Phys. C, 16, 433 (1983).
- 5 P. Delamoye, K. Rajnak, M. Genet and N. Edelstein, *Phys. Rev. B*, 28, 4923 (1983).
- 6 Ch. Khan Malek and J. C. Krupa, J. Chem. Phys., 84, 6584 (1986).
- 7 F. Auzel, Mater. Res. Bull., 14, 223 (1979).
- 8 M. Faucher and D. Garcia, personal communication.