Peculiar Fluorescence of Eu3+ in Oxyapatites*

B. PIRIOU[†], D. FAHMI, J. DEXPERT-GHYS

Laboratoire des Eléments de Transition dans les Solides, C.N.R.S., 1 place Aristide Briand, F-92195 Meudon Cédex, France

A. TAITAI and J. L. LACOUT

Laboratoire de Physicochimie des Solides, I.N.P.T., 38 rue des 36 ponts, F-31400 Toulouse, France

Abstract

The continuous solid solution $Ca_{10-x}Eu_x(PO_4)_6$ - $(O_{1+x/2}\square_{1-x/2}$, with $0.05 \le x \le 2$, was studied by the Eu^{3+} fluorescence at 300 and 77 K. The emission mainly arises from the 5D_0 level. The dependence upon the composition shows that Eu^{3+} ions occupy

preferentially site II. Eu³⁺ ions located in site I are only characterized for x > 1. Due to the occurrence of vacancies the lines are broad.

The site selective laser excitation of Eu³⁺ in site II allows us to classify them into two families. A structural model is proposed as explanation.

The spectra are unusual because of the high value of the 5D_0 level ($\simeq 17500~\rm cm^{-1}$), the large 7F_1 splitting and the very strong $^5D_0 \rightarrow ^7F_0$ emission line. The covalent character of the Eu³⁺ $-O^2$ bond correlated to a strong crystal field of nearly $C_{\infty\nu}$ symmetry allows us to assign the $^5D_0 \rightarrow ^7F_{1,2}$ lines. Discussion of this exceptional behavior of Eu³⁺ is given in terms of J-mixing.

^{*}Abstract of a paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987. The extended paper will be published in J. Luminescence, 1987.

[†]Author to whom correspondence should be addressed.