The Electronic Structure of Organometallic Complexes of the f Elements. XIX. Parametrization of the Crystal Field Splitting Patterns of Quasi Trigonal Bi-pyramidal Anionic Complexes Involving the $Tris(\eta^5$ -cyclopentadienyl)uranium(IV) Moiety*

HANNS-DIETER AMBERGER[†], HAUKE REDDMANN

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, F.R.G.

GEORGE SHALIMOFF and NORMAN M. EDELSTEIN

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, Calif. 94720, U.S.A.

Recently we reported the absorption and magnetic circular dichroism (MCD) spectra of pseudo-trigonal bipyramidal uranium(IV) complexes of the type

[†]Author to whom correspondence should be addressed.

TABLE I. Energy Levels and Eigenvectors for Cp₃U(NCS)₂⁻⁻

 $[Cp_3UX_2]^q$ (X = NCS⁻, NCBH₃⁻, D₂O; q = +1, -1) [1]. Arguments were also presented which showed the ground crystal-field state is of Γ_1 symmetry and separated by ~500 cm⁻¹ from the next higher state. The selection rules for induced electric dipole transitions allow only $\Gamma_1 \rightarrow \Gamma_4$ or Γ_6 transitions for the approximate D_{3h} symmetry of the metal ion. The selection rules of MCD spectroscopy, however, allow transitions only to excited Γ_6 levels [2, 3]. The wave functions of the levels of Γ_6 symmetry are described to first order by $|\pm 2 > (\text{if } J < 4)$ or $a|\pm 4 > + b|\mp 2 >$ (where the number in the ket is the J_z value). If the wave function is given by $|\pm 2 > \text{or if } 4a^2 < 2b^2$, a positive Faraday A term should be observed [1-3]. If $4a^2 > 2b^2$ a negative Faraday A term should be observed. Thus using the selection rules and the observed

signs of the Faraday A terms, the symmetry and the main J_z components of the eigenvectors of various excited levels have been given [1]. These levels are shown in Table I with the band numbering as given in ref. 1.

In this communication the parameters of a semiempirical Hamiltonian have been fitted to the levels assigned previously for $[Cp_3U(NCS)_2]^-$ and $[Cp_3U-(NCBH_3)_2]^-$. These parameters allow us to compare

Energy levels			Transition ^b	Eigenvectors	
Calculated (cm ⁻¹)	Observed (cm ⁻¹)	Diff. ^{a} (cm ⁻¹)		Symmetry	Components ^c
0	0			Γ_1	93 ³ H(4,0)
547	475	72	d	Γ5	84 ³ F(4,1)
4423	4107	316	1	Γ6	$57^{3}F(2,2) + 23^{3}H(5,2)$
6383	6297	86	2	Γ ₆	$62^{3}H(5,-4) + 27^{3}H(5,2)$
6432	6549	-117	3	Γ₄	$39^{3}H(5,3) + 39^{3}H(5,-3)$
7221	7740	-519	4	Г	$39^{3}H(5,2) + 27^{3}H(5,-4)$
9081	9050	31	e	Γ₄	$32^{3}F(3,3) + 32^{3}F(3,-3)$
9235	9515	-280	5	Гб	$36 {}^{3}F(4,-4) + 30 {}^{3}H(6,-4)$
9784	10020	-236	8	Γ ₆	$54^{3}F(3,2) + 24^{1}G(4,2)$
10221	10288	67	10	Γ ₆	$30^{3}F(3,2) + 23^{3}F(4,2)$
10721	10695	26	e	Γ4	$26^{3}F(4,3) + 26^{3}F(4,-3)$
11401	11211	190	11	Γ ₆	74 ³ H(6,2)
12694	12285	344	12	Γ ₆	$47 {}^{3}H(6,-4) + 24 {}^{1}G(4,-4)$
13470	13550	- 80	13	Γ4	$36^{3}(H(6,-3) + 36^{3}H(6,3))$
14780	14837	-57	14	Γ ₆	$49 {}^{1}D(2,2) + 13 {}^{3}F(4,2)$
15775	15674	101	e	Г6	42 ³ F(4,2) + 28 ¹ G(4,2)
16641	16393	248	15	Γ ₆	$36 {}^{1}G(4,-4) + 34 {}^{3}F(4,-4)$
16877	17123	-246	16	Γ4	$24 {}^{1}G(4,-3) + 24 {}^{1}G(4,3)$
20613	20492	121	19	Γ4	41 1 I(6,-3) + 41 1 I(6,3)
20765	20921	-156	20	Γ_6	$48^{1}I(6,2) + 29^{1}I(6,-4)$
21127	21142	-15	21	Гб	$64 \ {}^{1}I(6,-4) + 26 \ {}^{1}I(6,2)$
23359	23256	103	27	Γ ₆	$62^{3}P(2,2) + 25^{1}D(2,2)$

^aDifference = calculated – observed. ^bNumbering of the transitions from ref. 1. ^cPercentage of largest components only, nomenclature is ${}^{2S+1}L(J,J_z)$. ^dFrom a 'hot' transition. ^eThese weak transitions were detected by a closer inspection of the spectra.

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987.

the experimentally derived crystal-field splittings with that predicted for the Cp_3U^+ moiety by Tatsumi and Nakamura on the basis of extended Hückel calculations [4, 5].

The energy levels within an f^2 configuration in D_{3h} symmetry can be written in terms of a free-ion $(H_{\rm FI})$ and a crystal-field $(H_{\rm CF})$ Hamiltonian as follows

 $\mathcal{H}=H_{\mathrm{FI}}+H_{\mathrm{CF}}$

where

$$H_{\rm FI} = \sum_{k=0,2,4,6} f_k F^k (nf, nf) + \zeta_f a_{\rm so} + \alpha L (L+1) + \beta G(G_2) + \gamma(R_7) + \sum_{k=0,2,4} m_k M^k + k = 0, 2, 4$$

$$+\sum_{k=2,4,6}P_{k}P^{k}$$

and

$$H_{\rm CF} = B_0^2 C_0^{(2)} + B_0^4 C_0^{(4)} + B_0^6 C_0^{(6)} + B_6^6 [C_6^{(6)} + C_{-6}^{(6)}]$$

Details of $H_{\rm FI}$ have been described in ref. 6 and of $H_{\rm CF}$ in ref. 7.

The assignments given previously were fitted to the parameters of the above Hamiltonian by a leastsquares routine. In order to limit the number of free parameters, α , β , γ , the M^k and the P^k parameters were fixed at the values used for the analysis of $U(BD_4)_4$ in Hf(BD_4)_4 [8]. The remaining parameters were allowed to vary. For 18 levels the r.m.s. deviation was ~300 cm⁻¹ for both [Cp₃U(NCS)₂]⁻ and

TABLE II. Hamiltonian Parameters for $[Cp_3U(NCS)_2]^$ and $[Cp_3U(NCBH_3)_2]^-$ ^a

Parameters	$[Cp_3U(NCS)_2]^{}$	[Cp ₃ U(NCBH ₃) ₂] ⁻
F^2	45391	45609
F ⁴	44494	46116
Fб	19446	20780
5	1659	1664
α	[31] ^a	[31]
β	[-644]	[-644]
γ	[1200]	[1200]
M^0	[0.99]	[0.99]
M^2	[0.55]	[0.55]
M^4	[0.38]	[0.38]
P^2	[500]	[500]
P ⁴	[500]	[500]
P ⁶	[500]	[500]
B_0^2	-2795 ± 670	-3121 ± 824
B ⁴ ₀	3039 ± 1100	3554 ± 1526
BŚ	7659 ± 968	7250 ± 1658
Bg	-3064 ± 723	-2872 ± 817

^aAll parameters are in cm^{-1} . ^bValues of parameters in [] are held fixed at U(BD₄)₄ values (ref. 8).

 $[Cp_3U(NCBH_3)_2]^-$. The energy levels for $[Cp_3U-(NCS)_2]^-$ are given in Table I and the free-ion and crystal-field (CF) parameters for both compounds are given in Table II.

The fit as shown in Table I is poor, and the freeion parameters are not well defined. However the CF parameters are relatively insensitive to changes in the free-ion parameters and, given the assignments listed in Table I, appear to be of the correct sign and order of magnitude.

The magnetic susceptibility of $(C_4H_9)_4N[Cp_3U(NCBH_3)_2]$ was measured from 5-300 K; the data are shown in Fig. 1. From the appearance of 'hot' transitions the first excited state in this compound was located at ~600 cm⁻¹ and is calculated to be of E symmetry. We have fixed the energy of this level to 600 cm⁻¹ and calculated the magnetic susceptibility from 2-302 K with the wavefunctions obtained from the parameters given in Table II. The calculated susceptibility, with an orbital reduction factor of k = 0.90, is shown as the continuous line in Fig. 1 and agrees quite well with the experimental data.

Fig. 1. The magnetic susceptibility of $[(C_4H_9)_4N][Cp_3U-(NCBH_3)_2]$ as a function of temperature. The line represents the calculated values, the points represent the experimental data.

The empirical crystal-field parameters may be compared with those obtained from the extended Hückel orbital energies calculated by Tatsumi and Nakamura for the quasi-planar moiety Cp_3U^+ [4, 5]. From these energies the following crystal-field parameters are found: $B_0^2 = -3660$, $B_0^4 = 2970$, $B_0^6 = 3250$, and $|B_6^6| = 6830$ (all in cm⁻¹). The influence of the axial ligands may be estimated by use of the angular overlap model [9, 10]. If we arbitrarily set the value of e_{σ} of axial ligands at 750 cm⁻¹ (1.5 times the value used for Cp₃Pr·CNC₆H₁₁), we obtain the values $B_0^2 = -2600$, $B_0^4 = 4860$, $B_0^6 = 5940$, (all in cm⁻¹) and $|B_6^6|$ is unaffected. Thus the rather straightforward Hückel calculations agree in sign and magnitude with our empirically derived crystal-field parameters for these organouranium complexes. It appears the results of the Tatsumi's extended Hückel calculations on lower symmetry complexes of the type Cp_3UX can be used for initial parameters for further empirical crystal-field analyses.

Acknowledgements

One of us (H.-D.A.) would like to thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

References

- 1 H.-D. Amberger, R. D. Fischer and K. Yünlü, Organometallics, 5, 2109 (1986).
- 2 C. Görller-Walrand and J. Godemont, J. Chem. Phys., 66, 48 (1977).
- 3 C. Görller-Walrand, Y. Beyens and J. Godemont, J. Chim. Phys., 76, 190 (1979).
- 4 K. Tatsumi and A. Nakamura, J. Organomet. Chem., 272, 141 (1984).
- 5 K. Tatsumi, personal communication.
- 6 B. G. Wybourne, 'Spectroscopic Properties of Rare Earths', Wiley, New York, 1965.
- 7 S. Hüfner, 'Optical Spectra of Transparent Rare Earth Compounds', Academic Press, New York, 1978.
- 8 K. Rajnak, E. Gamp, R. Banks, R. Shinomoto and N. M. Edelstein, J. Chem. Phys., 80, 5924 (1984).
- 9 H. Reddmann, Diplomarbeit, Hamburg, 1986.
- 10 H. Reddmann and H.-D. Amberger, J. Less-Common Met., 112, 297 (1985).