New ¹⁶⁶Er Nuclear States Populated in the ^{166m}Ho Decay*

Th. OGANDAGA, J. DALMASSO, A. HACHEM and G. ARDISSON[†]

Laboratoire de Radiochimie, Faculté des Sciences, 28 avenue Valrose, F06034 Nice Cédex, France

The structure of the strongly deformed ¹⁶⁶Er nucleus has been studied over the past years using different nuclear reactions. Single nucleon transfer reactions, such as ¹⁶⁷Er(d, t) [1], ¹⁶⁵Ho(³He, d) and ¹⁶⁵Ho(α , t) [2], gave evidence of quasiparticle structure, while inelastic scattering ¹⁶⁶Er (d, d') [3] was more appropriate to observe collective excitations.

The electromagnetic deexcitation of some lowlying energy levels fed in the β decay of ¹⁶⁶Ho ($T_{1/2}$ = 26.80 h) was studied by Allab et al. [4]. Our actual knowledge of the high-spin levels of ¹⁶⁶Er is due to the study of the ^{166m}Ho ($T_{1/2}$ = 1200 years) decay [5]. We decided to reinvestigate the decay of this nuclide in order to precisely determine the K quantum number of some negative parity levels.

Experimental

Spectrometers

The detectors used in this work were mainly a 17% relative efficiency intrinsic germanium detector having an energy resolution F.W.H.M. (Full Width at Half-Maximum) of 1.9 keV on the 1.33 MeV γ -line (⁶⁰Co), and a 2 cm³ planar HPGe detector having an F.W.H.M. of 190 eV at the K X-line. The pulses were amplified with a spectroscopy amplifier (572 EG & G Ortec) and analysed through a 8192 channel 918 ADCAM multichannel buffer system (EG & G Ortec) coupled with a PDP11/23 (350 DEC) disk based microcomputer.

Radiochemical Procedure

The ^{166m}HoCl₃ source was provided by the L.M.R.I. (Laboratoire de Métrologie des Radiations Ionisantes) as a standard source of 48.5 kBq. From this 8 month old source, the only holmium nuclide remaining at the date of measurements was ^{166m}Ho. However, preliminary measurements exhibited small contaminations ($\sim 0.1\%$) from long-lived rare-earth isotopes such as ¹⁵²Eu and ¹⁵⁴Eu. Thus, a radiochemical separation was needed to attribute the presence of very weak lines to the 166m Ho decay. The following classical procedure [6] was applied: the holmium solution was put on the top of a Dowex 50 WX-8 cation exchange column of 15 cm length and 0.05 cm² area preliminarily conditioned with the elutant; holmium was eluted with a 0.51 M ammonium 2-hydroxy-2-methylpropanoate solution, adjusted to pH = 3.3 with NH_4OH . At room temperature [6], holmium passed between 1.5 and 3 column volumes (CV), whereas europium isotopes needed more than 8 CV.

The spectrometers were calibrated in energy and efficiency by counting runs with standard sources such as ¹⁵²Eu, ¹³⁷Cs and ²⁰⁷Bi; the method of calibration has been described elsewhere [7].

Results and Discussion

The energy and intensity of 54 γ -lines were accurately measured in this work, of which 11 are reported for the first time. Their values are in very good agreement with Reich and Cline's values [5] as well as that of other authors [8-10]. Table I lists the energies (column 1) of the new γ -lines observed here, together with their relative intensities (column 2) normalized to 100 photons of the 184.414 keV γ -ray.

The interpretation of these lines was made possible using the Ritz combination principle with our improved energy values and the $\gamma - \gamma$ coincidence data.

The new 785.79 keV state in ¹⁶⁶Er is deduced here, because of the presence of new γ -rays of 785.81, 705.09 and 520.85 keV interpreted as deexciting respectively the 0^+ , 2^+ and 4^+ members of the ground state band. This level is the band-head of the so-called ' γ -band' (K = 2) which is populated up to spin I = 8 in the ^{166m}Ho decay, and was observed until now in the 166Yb decay and in the ^{166g}Ho decay [4].

A 1527.12 keV level is suggested to be fed for the first time in the ^{166m}Ho decay as the result of its deexcitation by the new 1261.98 and 1446.72 γ -lines to the respective $KI^{\pi} = 04^+$ and 02^+ levels in the ground state band. This level is identified to the I^{π} = 2⁺ state found in the ¹⁶⁶Yb decay and in the ^{166g}Ho decay [4]. The reduced probability ratio B(E2) of the assumed E2 transitions to the respective 2^+ and 4^+ levels is equal to ~0.5, which compares well to the squared Clebsch-Gordan ratio, *i.e.*, 0.55 for K = 0. Hence, this level belongs to the $K^{\pi} = 0^+$ band whose band-head energy 1460.0 keV was measured in the ^{166m}Ho decay [4].

A 1572.07 keV level with $I^{\pi} = 4^{-}$ is also newly reported in the ^{166m}Ho decay; it feeds the $KI^{\pi} = 25^+$

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6–10, 1987. [†]Author to whom correspondence should be addressed.

E_{γ} (keV)	I_{γ}^{c}	Initial level				Final level			
		E (keV)	K	Ι	π	E (keV)	K	Ι	π
305.03(5)	0.023(3)	1376.00	2	7	+	1075.25	2	5	+
476.38(6)	0.052(6)	1692.24		5		1215.97	2	6	+
496.86(4)	0.17(1)	1572.07 ^b	2	4	_	1075.25	2	5	+
520.85(5) ^a	0.21(1)	1596.12	2	4	_	1075.25	2	5	+
		785.79 ^b	2	2	+	264.991	0	4	+
615.84 (5)	0.044(13)	1572.07 ^b	2	4	_	956.24	2	4	+
705.09(7)	0.011(2)	785.79 ^b	2	2	+	80.577	0	2	+
785.81(7)	0.019(4)	785.79 ^b	2	2	+	0.000	0	0	+
1261.98(12)	0.010(2)	1527.12	0	2	+	264.991	0	4	+
1306.60(15)	0.010(2)	1572.07 ^b	4	4	_	264.991	0	4	+
1331.04(13)	0.010(2)	1596.12	2	4	_	264.991	0	4	+
1446.72(13)	< 0.01	1527.12 ^b	0	2	+	80.577	0	2	+

TABLE I.	New	Photons	Lines	Observed	in the	166mHo Decay
----------	-----	---------	-------	----------	--------	--------------

^aThis line can be placed twice. ^bNew level in ¹⁶⁶Er. ^cThe relative intensities are normalized to $I_{\gamma} = 100$ for the 184.407 keV γ -ray. Uncertainties (in parentheses) on energies and intensities are given on the last digits.

and 24⁺ members of the γ -band, resulting in new lines of 496.80 and 615.84 keV respectively. We also observe a ΔK hindered transition of 1306.60 keV to the $KI^{\pi} = 04^+$ state. The reduced probability ratio B(E1) of the γ -lines feeding the γ -band favors a quantum number K = 4, but the mixing with higher K values is not excluded.

References

1 D. G. Burke, D. E. Nelson and C. W. Reich, Nucl. Phys. A, 124, 683 (1969).

- 2 K. Katori, L. R. Medsker and J. L. Yatema, *Phys. Rev.* C, 9, 360 (1974).
- 3 P. O. Tjom and B. Elbeck, Nucl. Phys. A, 107, 385 (1968).
- 4 M. Allab, F. Azgui and G. Ardisson, Radiochem. Radioanal. Lett., 30, 253 (1977).
- 5 C. W. Reich and J. E. Cline, Nucl. Phys. A, 159, 181 (1970).
- 6 H. L. Smith and D. C. Hoffman, J. Inorg. Nucl. Chem., 3, 243 (1956).
- 7 C. Ardisson, J. Dalmasso and G. Ardisson, *Phys. Rev.* C, 33, 2132 (1986).
- 8 T. E. Sampson, Nucl. Instr. Meth., 150, 361 (1978).
- 9 R. J. Gehrke, R. G. Helmer and R. C. Greenwood, Nucl. Instr. Meth., 109, 83 (1973).
- 10 N. Lavi, Nucl. Instr. Meth., 109, 265 (1973).