Coordination Chemistry of Higher Oxidation States. Part 21.* Platinum-195 NMR Studies of Platinum(II) and Platinum(IV) Complexes of Bi- and Multi-dentate Phosphorus, Arsenic and Sulphur Ligands

ERIC G. HOPE, WILLIAM LEVASON** and NIGEL A. POWELL Department of Chemistry, The University, Southampton S09 5NH, U.K. Received November 15, 1985

Abstract

195-Platinum NMR spectra are reported for a series of complexes of bidentate ligands $[Pt(L-L)X_4]$ (X = Cl, Br; L-L = diphosphine, diarsine, dithioether, diselenoether), $[Pt(Me_2PCH_2CH_2PMe_2)_2X_2]$ -X₂, $[Pt(o-C_6H_4(AsMe_2)_2)_2X_2]X_2$, and for the Pt(II) analogues. The trends in chemical shifts $\delta(Pt)$ and ¹J-(Pt-P), ¹J(Pt-Se) coupling constants are discussed, and used to establish the nature of the solution species obtained by oxidation of Pt(II) complexes of some multidentate phosphorus and arsenic ligands. The $[Pt(L-L)I_4]$ materials are shown to exist as $[Pt^{II}(L-L)I_2]$ in dimethylsulphoxide solution, but $[Pt(o-C_6H_4(AsMe_2)_2)_2I_2]^{2+}$ is a genuine Pt(IV) iodocomplex.

Introduction

Platinum-195 is a moderately sensitive nucleus (195 Pt, $I = \frac{1}{2}$, 33%, $D_p^{\dagger} = 3.36 \times 10^{-3}$, $D_c^{\dagger} = 19.1$) and a considerable amount of data is available on

Pt(II) and Pt(0) complexes [2, 3]. Data on platinum-(IV) complexes is more limited, especially upon complexes of heavier donor atoms. During recent studies of platinum diselenoether complexes [4–6] we required ¹⁹⁵Pt NMR spectral data for a variety of other bidentate ligand analogues for comparison purposes, and the data recorded below was obtained. Since data on Pt(IV) complexes is largely restricted to monodentate ligand examples we report the results of our studies here.

Results

The chemical shifts $\delta(Pt)$ and coupling constants ¹J(Pt-L) of the Pt(IV) complexes are given in Table

I, (along with representative data on diselencether complexes [6]), and corresponding data on Pt(II) analogues in Table II. Generally the platinum(IV) complexes were less soluble in most solvents than the platinum(II) analogues, and in many cases only dimethylsulphoxide was suitable. Unfortunately a number of the Pt(IV) complexes decomposed in this solvent [7, 8], a problem more often encountered with ligands with vinylic or o-phenylene backbones and this restricted the range of complexes studied.

$[Pt(L-L)X_2]$ and $[Pt(L-L)X_4]$ (X = Cl, Br, I)

The chemical shifts of the $Pt(L-L)X_2$] (Table II) are similar to those of the monodentate ligand analogues cis-[PtL₂X₂] [2, 3] indicating that the donor atoms are the predominant influence on $\delta(Pt)$. The effect of the ligand backbone is relatively small (<200 ppm), and it is notable that although the ${}^{31}P$ [9] and ${}^{77}Se$ [4] chemical shifts show marked dependence upon chelate ring size (reflected by the ring parameter ΔR) [9], a similar effect is not apparent in the ¹⁹⁵Pt shifts. Both the chemical shifts $\delta(Pt)$ and ${}^{1}J({}^{195}Pt-{}^{31}P)$ and ${}^{1}J({}^{195}Pt-{}^{31}P)$ ⁷⁷Se) show the usual dependence upon the trans ligand (Table II). The linewidths of the platinum resonances are small for complexes of P, Se or S donors, but those of N, Sb and to a lesser extent As ligands are broadened by those quadrupolar nuclei ($W_{1/2} \leq 400$ Hz for N or Sb donors).

The $[Pt(L-L)X_4]$ (X = Cl, Br) have much higher frequency resonances than the Pt(II) precursors, and the 'oxidation shift' ΔPt [defined as $\delta [Pt(L-L)X_4] - \delta [Pt(L-L)X_2]]$ is always greater for X = Cl than X = Br for fixed (L-L) (Table I) being typically *ca.* 2000 ppm (X = Cl) and *ca.* 1200 ppm (X = Br), with nitrogen donors producing rather larger shifts, than sulphur, phosphorus or arsenic. Selenium ligands differ in producing much smaller shifts typically *ca.* 1300 ppm (X = Cl) and *ca.* 650–900 ppm (X = Br). Our attempts to record ¹⁹⁵Pt NMR spectra for platinum(IV) distibines failed, as the complexes decomposed immediately

© Elsevier Sequoia/Printed in Switzerland

^{*}Part 20, see ref. 1.

^{**}Author to whom correspondence should be addressed. [†]Receptivities relative to ¹H and ¹³C [2].

Complex	δ(Pt) ^a (ppm)	$\delta(P)^{\mathbf{b}}$ (ppm)	$^{1}J(Pt-L)^{c}$ (Hz)	∆Pt ^đ (ppm)
[Pt(MeaNCHaCHaNMea)Cla]	-113			2145
$[Pt(Me_2NCH_2CH_2NMe_2)Bt_4]$	-1073			1447
$[Pt(2,2'-bipyridyl)Cl_{4}]$	-311			2004
[Pt(2,2'-bipyridyl)Br ₄]	-1410			1134
[Pt(Ph2PCH2CH2PPh2)Cl4]	-2701(t)	36.7	2183	1847
[Pt(Ph2PCH2CH2PPh2)Br4]	-3820(t)	27.5	2092	1001
[Pt(Me ₂ PCH ₂ CH ₂ PMe ₂) ₂ Cl ₂]Cl ₂	-4161(q)	35.1	1383	1151
[Pt(Me ₂ PCH ₂ CH ₂ PMe ₂) ₂ Br ₂]Br ₂	-4932(q)	26.0	1382	331
[Pt(Ph ₂ PCHCHPPh ₂)Cl ₄] ^f	-2470(t)	43.8	2225	1997
[Pt(Ph ₂ PCHCHPPh ₂)Br ₄] ^f	-3926(t)	36.2	2062	972
[Pt(PhP(CH ₂ CH ₂ PPh ₂) ₂)Cl ₃]BF ₄ ^f	-3546(d,t)	22.5,83.1	1953, 1531	1313
$[Pt(PhP(CH_2CH_2PPh_2)_2)Br_3]Br^{f}$	-4546(d,t)	11.5, 78.0	1904, 1544	462
'PtP(CH ₂ CH ₂ PPh ₂) ₃ Cl ₄ '	-3509(d,t)	see text		
$[Pt(o-C_6H_4(AsMe_2)_2)Cl_4]$	-2711			1845
$[Pt(o-C_6H_4(AsMe_2)_2)Br_4]$	-3872			1000
[Pt(Ph2AsCH2CH2AsPh2)Cl4]	-2482			2068
[Pt(Ph2AsCH2CH2AsPh2)Br4]	-3695			1217
[Pt(Me ₂ As(CH ₂) ₃ AsMe ₂)Cl ₄]	-2952			1368
$[Pt(o-C_6H_4(AsMe_2)_2)_2Cl_2]Cl_2$	-4456			950
$[Pt(o-C_6H_4(AsMe_2)_2)_2Br_2]Br_2$	-5202			402
$[Pt(o-C_6H_4(AsMe_2)_2)_2I_2](NO_3)_2^g$	-5406			191
$[Pt(As(CH_2CH_2CH_2AsMe_2)_3)Cl_4]$	-4348			397
[Pt(MeSCH ₂ CH ₂ SMe)Cl ₄]				1865
[Pt(MeSCH ₂ CH ₂ SMe)BI ₄]	-3053, -3065			1073
[Pt(MeS(CH ₂) ₃ SMe)Cl ₄]	-1630, -1649			1910
[Pt(MeS(CH ₂) ₃ SMe)Br ₄]	-2760, -2779			1137
[Pt(PhSCH2CH2SPh)Cl4]	-1749, -1754			2057
[Pt(PhSCH ₂ CH ₂ SPh)Br ₄]	-2945, -2949			1259
[Pt(MeSeCH ₂ CH ₂ SeMe)Cl ₄] ^e	-2070, -2078		249, 222	1342
$[Pt(MeSeCH_2CH_2SeMe)BI_4]^e$	-2902, -2908		110, 116	917
[Pt(MeSe(CH ₂) ₃ SeMe)Cl ₄] ^e	1816, -1848		201, 189	1398
[Pt(MeSe(CH ₂) ₃ SeMe)BI ₄] ^e	-2970, -3013		128, 103	646
[Pt(PhSeCH ₂ CH ₂ SePh)Cl ₄] ^e	-2217, -2211		174, 154	1249
[Pt(PhSeCH ₂ CH ₂ SePh)Br ₄] ^e	-3004, -3012		85,90	901

TABLE I. ¹⁹⁵Pt and ³¹P NMR Data on some Platinum(IV) Complexes

a ¹⁹⁵Pt chemical shift relative to external 1 mol dm⁻³ Na₂PtCl₆ in H₂O ($\delta = 0$) d = doublet, t = triplet, q = quintet, q,d = quartet of doublets, d,t = doublet of triplets. ^dOxidation shift, *i.e.* $\delta(Pt^{IV} \text{ complex}) - \delta(Pt^{II} \text{ complex})$. ^eData from ref. 6. The corresponding data for the Pt(II) selenoether complexes in ref. 4. The two $\delta(Pt)$ values reflect the presence of *meso* and *DL* invertomers in the dithio- and diselenoether complexes. ^fCH₂Cl₂ solution all others in dmso. ^gIn situ in dilute ~10 mol dm⁻³ HNO₃.

TABLE II. ¹⁹⁵Pt and ³¹P NMR Data on some Platinum(II) Compounds

$\delta(Pt) (ppm)^{a,b}$	δ(P) (ppm) ^a	$^{1}J(Pt-P)^{a}$ (Hz)
-2258		
-2520		
-2315		
-2544		
-4554(t)	43.8	3600
-4821(t)	47.0	3553
	$\frac{\delta(Pt) (ppm)^{a,b}}{-2258}$ -2520 -2315 -2544 $-4554(t)$ $-4821(t)$	$\frac{\delta(Pt) (ppm)^{a,b}}{-2258} \qquad \qquad \delta(P) (ppm)^{a}$ $-2258 \\ -2520 \\ -2315 \\ -2544 \\ -4554(t) \qquad \qquad 43.8 \\ -4821(t) \qquad \qquad 47.0$

(continued on facing page)

TABLE II	(continued)
----------	-------------

δ(Pt) (ppm) ^{a,b}	$\delta(P) (ppm)^{a}$	$^{1}J(Pt-P)^{a}$ (Hz)
-5371(t)	47.4	3400
-5294(q)	47.8	2370
-4467(t)	50.1	3623
-4898(t)	54.0	3576
-5431(t)	55.4	3409
-4525(t)	43.9	3607
-4372(q,d)	28.2, 121.9	2585,2516
-5312	33.2	2227
-5263	30.2	2280
-4859(d,t)	42.0, 85.6	3020, 2460
-5008(d,t)	42.9, 89.5	3021, 2440
-4556		
-4872		
-4550		
-4912		
-4320		
-5406		
5604		
-5597		
-4712		
-4745		
-4553		
-4952		
5800		
-4556		
-4833		
-3763, -3777		
-4125, -4139		
-3538, -3570		
-3893, -3922		
-3796, -3823		
-4192, -4219		
	$\begin{split} & \delta(\text{Pt}) (\text{ppm})^{a,b} \\ & -5371(t) \\ & -5294(q) \\ & -4467(t) \\ & -4898(t) \\ & -5431(t) \\ & -4525(t) \\ & -4372(q,d) \\ & -5312 \\ & -5263 \\ & -4859(d,t) \\ & -5008(d,t) \\ & -4556 \\ & -4872 \\ & -4550 \\ & -4912 \\ & -4320 \\ & -5406 \\ & -5604 \\ & -5597 \\ & -4712 \\ & -4745 \\ & -4553 \\ & -4952 \\ & -5800 \\ & -4556 \\ & -4833 \\ \hline \\ & -3763, -3777 \\ & -4125, -4139 \\ & -3538, -3570 \\ & -3893, -3922 \\ & -3796, -3823 \\ & -4192, -4219 \end{split}$	

^aSee footnotes to Table I. ^bCorresponding diselenoether data in ref. 4. ^cSamples dissolved in dmso except (d) CH₂Cl₂.

in solution with halogenation of the distibine [8]. Similarly although materials of composition [Pt- $(L-L)I_4$ have been obtained with diphosphines, diarsines or dithioethers [7, 8], these were poorly soluble in common solvents except for dmso, in which they gave identical ¹⁹⁵Pt spectra to [Pt(L-L)-I2]. Careful examination of higher frequency regions of the spectrum showed no platinum resonances attributable to platinum(IV) species, and the absence of the latter is clear from the ³¹P NMR spectra of the diphosphines which show only signals characteristic of $[Pt(L-L)I_2]$. Even with a large excess (ca. 10 fold) of added I_2 only the platinum-(II) complexes are evident in the NMR spectra, and thus it is possible that the $[Pt(L-L)I_4]$ [8] are really platinum(II) polyiodides [cf. Pd(Ph2PCH- $CHPPh_2I_2 \cdot I_2$ [10] and $[Pd(o-C_6H_4(SPh)_2)I_3]$ [11], although only an X-ray study will resolve the question for certain.

$[Pt(L-L)_2X_2]^{2+}$

It is not possible to prepare 2:1 $[Pt(L-L)_2X_2]^{2+}$ complexes of Pt(IV) with Me₂NCH₂CH₂NMe₂, 2,2'bipyridyl or dithioethers [7, 8]. Halogen oxidation of $Pt(L-L)_2X_2$ (L-L = $o-C_6H_4(AsMe_2)_2$, Me_2PCH_2 - CH_2PMe_2 ; X = Cl, Br) gave the expected [8] trans- $[Pt(L-L)_2X_2]X_2$, but chlorination of $Pt(Ph_2PCH_2 CH_2PPh_2)_2Cl_2$ gave a complex mixture of products. A comparison of the $\delta(Pt)$ shifts in $Pt(L-L)_2X_2$ with $[Pt(L-L)_2X_2]^{2+}$ (Tables I, II) reveals much smaller oxidation shifts (ca. 1000 ppm, X = Cl; ca. 400 ppm, X = Br) than between $[Pt(L-L)X_2]/$ $[Pt(L-L)X_4]$. Harris et al. [12] isolated [Pt(o- $C_6H_4(AsMe_2)_2I_2](NO_3)_2$ by oxidation of the $[Pt(o-C_6H_4(AsMe_2)_2)_2I_2]$ with 10 mol dm⁻³ nitric acid; we find in situ oxidation of $[Pt(o-C_6H_4 (AsMe_2)_2 I_2$ ($\delta(Pt) = -5597$ ppm) with HNO₃ gave a reddish solution with $\delta(Pt) = -5406$ ppm. Although the oxidation shift is small (191 ppm) it is in line with the decreasing oxidation shifts in this series (Cl = 950, Br = 402 ppm), and would seem to support the Pt(IV) formulation. Attempts to oxidise $[Pt(Me_2PCH_2CH_2PMe_2)_2I_2]$ similarly *in situ* resulted in a brown suspension which failed to give a ¹⁹⁵Pt NMR spectrum.

Multidentate Ligand Complexes

The ¹⁹⁵Pt spectra of mer-[Pt(PhP(CH₂CH₂PPh₂)₂)- X_3 X show the expected doublet of triplets coupling pattern, and oxidation shifts which lie between those of P_2X_4 and P_4X_2 donor sets. The ³¹P NMR spectrum of Pt(P(CH₂CH₂PPh₂)₃)Cl₂ shows two resonances each with platinum satellites due to coordinated $P_{\chi}^{/}$ and -PPh₂, whilst the ¹⁹⁵Pt NMR spectrum consists of a 1:3:3:1 quartet, each line split into a further doublet showing the presence of a trigonal bipyramidal $[PtP_4C1]^{\dagger}C1^{-}$ cation. Although cautious chlorine oxidation of this produces (cis) pseudooctahedral [Pt(P(CH₂CH₂PPh₂)₃)Cl₂]Cl₂, this is unstable in solution and decomposes with displacement of coordinated phosphorus by Cl⁻ [8]. The addition of an excess of chlorine to [Pt(P(CH₂CH₂PPh₂)₃)Cl]Cl in CH₂Cl₂ solution produces a yellow solution stable for some hours which has the ¹⁹⁵Pt and ³¹P NMR spectra shown in Fig. 1. These are readily inter-

Fig. 1. (a) ³¹P, and (b) ¹⁹⁵Pt NMR spectra of the product of the reaction $[Pt(P(CH_2CH_2PPh_2)_3)Cl]Cl + Cl_2 in CH_2Cl_2$.

pretable as due to a $mer-[PtP_3Cl_3]^+$ cation (I), the free arm of the tetraphosphine having being oxidised to P=O.

The ³¹P NMR resonances at 96.5, 24.9 and 47.0 ppm are assigned to $P'^{1}J(Pt-P) = 1910$, $P''^{1}J(Pt-P) = 1523$ Hz, and PO respectively. A small coupling

between P' and P of ca. 48 Hz is also observed. The $\delta(Pt)$ resonance of this solution is also consistent with a P_3Cl_3 donor set, rather than with P_4Cl_2 $[-3509, cf. [Pt(PhP(CH_2CH_2PPh_2)_2)Cl_3]^+ -3546,$ $[Pt(Me_2PCH_2CH_2PMe_2)_2Cl_2]^{2+}$ -4161 ppm]. In the case of the complexes of the tripod tetrarsine $As(CH_2CH_2CH_2AsMe_2)_3$ the $Pt(As(CH_2CH_2CH_2-$ AsMe₂)₃)Cl]Cl is probably planar (As₃Cl) since it has $\delta(Pt) = -4745$ ppm, similar to that of $[Pt(MeAs(CH_2CH_2CH_2AsMe_2)_2)Cl]Cl -4712 ppm$ and mer-[Pt(AsMe₃)₃Cl]⁺ -4732 ppm [2]. The oxidation product Pt(As(CH₂CH₂CH₂AsMe₂)₃)Cl₄ has $\delta(Pt) = -4348$ ppm, compared with $[Pt(AsMe_3)_3]$ - Cl_3 ⁺ -3072 ppm [2] and $[Pt(o-C_6H_4(AsMe_2)_2)_2-Cl_2]^{2+}$ -4456 ppm, which indicates an As₄Cl₂ donor set. It is likely that the differences between the tetraphosphine and tetraarsine result from the stronger donor and smaller steric properties of -AsMe₂ versus -PPh₂ substituents.

Discussion

The chemical shifts of metal nuclei are predominantly affected by the paramagnetic term σ_p [3], and for several metals a correlation of δ with the lowest energy electronic spectra absorptions has been established [2]. For platinum some qualitative success has been achieved by this approach [13, 14] but quantitative predictions of the chemical shifts have proved elusive.

One of the major problems is the difficulty of distinguishing satisfactorily the d-d transitions which lie to low energy of intense charge transfer bands, and are often partially obscured by the tails of these more intense bands [15]. The complexes studied in our work are of low symmetry which further complicates the interpretation.

Empirically we observe that a plot of δ [Pt(L-L)-Cl₄] versus δ [Pt(L-L)Br₄] gives an approximate straight line, although the diselencether ligands chemical shifts are in poorer agreement than the other donor types. Inclusion of P₃X₃, P₄X₂ and As₄X₂ donor sets results in a curved plot (Fig. 2). The theoretical justification of such a plot is weak, but empirically it is useful to confirm the presence of the same donor sets in chloride and bromide complexes. It is not however a sufficiently precise correlation to predict accurately chemical shifts.

Fig. 2. 195-Pt chemical shifts in Pt(IV) complexes. Key: 1, [Pt(Me₂NCH₂CH₂NMe₂)X₄]; 2, [Pt(2,2'-bipyridyl)X₄]; 3, [Pt(MeS(CH₂)₃SMe)X₄]; 4, [Pt(PhSCH₂CH₂SPh)X₄]; 5, [Pt(MeSeCH₂CH₂SeMe)X₄]; 6, [Pt(MeSe(CH₂)₃SeMe)X₄]; 7, [Pt(MeSCH₂CH₂SMe)X₄]; 8, [Pt(PhSeCH₂CH₂SePh)-X₄]; 9, [Pt(Ph₂AsCH₂CH₂AsPh₂)X₄]; 10, [Pt(Ph₂PCH-CHPPh₂)X₄]; 11, [Pt(Ph₂PCH₂CH₂PPh₂)X₄]; 12, [Pt(o-C₆H₄(AsMe₂)₂)X₄]; 13, [Pt(PhP(CH₂CH₂PPh₂)₂)X₃]⁺; 14, [Pt(Me₂PCH₂CH₂PMe₂)₂X₂]²⁺; 15, [Pt(o-C₆H₄(As-Me₂)₂)₂X₂]²⁺.

The empirical correlation of $\delta(Pt)$ with donor set (and hence with coordination numbers) is particularly useful in complexes of multidentate ligands as the examples above demonstrate.

Experimental

195-Pt NMR spectra were recorded on a Bruker AM360 spectrometer. Samples were dissolved in the solvents indicated and spectra recorded immediately, using 10 mm external diameter tubes, containing a 5 mm co-axial tube filled with D_2O to provide the lock. A 1 M solution of Na₂PtCl₆ in H₂O was used as external reference ($\delta = 0$) which has a frequency of 77.418 MHz.

Many of the platinum(IV) samples were those prepared previously [7, 8] or where necessary were made by the methods described therein, or by literature methods.

The $[Pt(Ph_2PCHCHPPh_2)X_2]$ (X = Cl, Br, I) were made by reaction of K_2PtCl_4 [with KX (X = Br, I)] and *cis*-Ph_2PCHCHPPh_2 in water-ethanol, followed by dissolution of the product in boiling *N*,*N*- dimethylformamide (dmf). After solution was complete the dmf solution was concentrated to small volume, cooled, and excess diethyl ether added to precipitate the products [8]. As prepared the products are the expected *cis* chelates with ³¹P NMR shifts (Table II) indicative of a five-membered ring $[\delta(P) \sim 50-56$ ppm). If the dmf dissolution stage is omitted the products have a $[Pt(Ph_2PCHCHPPh_2)-X_2]_n$ composition, but are much less soluble in organic solvents. These materials dissolve poorly in dmso to give solutions with ³¹P NMR shifts of 7.3 $[^1J(Pt-P) = 3614$ Hz] X = Br, and 8.7 [3536] X = Cl, and appear to be ligand bridged dimers [16, 17].

$[Pt(o-C_6H_4(AsMe_2)_2)_2Br_2]Br_2$

[Pt(o-C₆H₄(AsMe₂)₂)₂]Br₂ prepared by the literature method was suspended in CCl₄ and excess of a solution of bromine in CCl₄ was added. After stirring vigorously for 2 h, the product was filtered off, washed with dichloromethane/ethanol (1:1 ν/ν) and dried *in vacuo. Anal.* Found: C, 21.9; H, 3.0. Calc. for C₂₀H₃₂As₄Br₄Pt: C, 22.1; H, 2.9%. E_{max} (cm⁻¹) [ϵ_{mol} (dm³ cm⁻¹ mol⁻¹)] 26 300 [4700].

$[Pt(Me_2PCH_2CH_2PMe_2)_2Br_2]Br_2$

The complex was prepared by an analogous method to that used in the preparation of $[Pt(o-C_6H_4(AsMe_2)_2)_2Br_2]Br_2$. Anal. Found: C, 17.6; H, 4.0. Calc. for $C_{12}H_{32}Br_4P_4Pt$: C, 17.7; H, 3.9%. $E_{max} (\epsilon_{mol}) = 27\,800(2600)$.

Acknowledgement

We thank SERC for support (E.G.H. and N.A.P.).

References

- 1 H. C. Jewiss, W. Levason and M. Webster, Inorg. Chem., in press.
- 2 R. K. Harris and B. E. Mann (eds.), 'NMR and the Periodic Table', Academic Press, New York 1978.
- 3 P. S. Pregosin, Coord. Chem. Rev., 44, 247 (1982).
- 4 D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray and G. L. Marshall, J. Chem. Soc., Dalton Trans., 1265 (1985).
- 5 E. G. Hope, W. Levason, S. G. Murray and G. L. Marshall, J. Chem. Soc., Dalton Trans., 2185 (1985).
- 6 E. G. Hope, W. Levason, M. Webster and S. G. Murray, J. Chem. Soc., Dalton Trans., in press.
- 7 D. J. Gulliver, W. Levason, K. G. Smith, S. G. Murray and M. J. Selwood, J. Chem. Soc., Dalton Trans., 1872 (1980).
- 8 D. J. Gulliver, W. Levason and K. G. Smith, J. Chem. Soc., Dalton Trans., 2153 (1981).

- 9 P. E. Garrou, Chem. Rev., 81, 229 (1981).
- L. R. Gray, D. J. Gulliver, W. Levason and M. Webster, *Inorg. Chem.*, 22, 2362 (1983).
- 11 L. R. Gray, D. J. Gulliver, W. Levason and M. Webster, Acta Crystallogr., Sect. C, 39, 877 (1983).
- 12 C. M. Harris, R. S. Nyholm and D. J. Phillips, J. Chem. Soc., 4379 (1960).
- 13 R. R. Dean and J. C. Green, J. Chem. Soc. A, 3047 (1968).
- 14 P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor and I. R. H. Marshall, J. Chem. Soc., Dalton Trans., 459 (1976). 15 A. B. P. Lever, 'Inorganic Electronic Spectroscopy',
- 2nd edn., Elsevier, Amsterdam, 1984.
- 16 A. R. Sanger, J. Chem. Soc., Dalton Trans., 1971 (1977).
- 17 W. E. Hill, D. M. A. Minahan, J. G. Taylor and C. A. McAuliffe, J. Am. Chem. Soc., 104, 6001 (1982).