Multinuclear NMR Studies of the Reactions of $MeAsH_2$ with Me_2AsNMe_2 and $Me_2AsNMe_2 \cdot BH_3$

V. K. GUPTA, L. K. KRANNICH* and C. L. WATKINS

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Ala. 35294, U.S.A. (Received August 5, 1986)

Abstract

The reactions of MeAsH₂ with Me₂AsNMe₂ and $Me_2AsNMe_2 \cdot BH_3$ have been carried out in toluene-d₈ solution as a function of temperature and time. The progress of the reactions was monitored by multinuclear (¹H, ¹¹B, and ¹³C) NMR spectroscopy over the temperature range of −80 and −10 °C. NMR spectral data analysis suggests the initial formation of an unstable intermediate, Me₂AsAs(H)Me, which undergoes multiple condensation reactions to give (MeAs)₅. The other products of the reactions are $Me_2AsAsMe_2$, Me_2AsH , $MeAsH_2$, Me_2NH or Me_2NH . BH₃ and uncharacterized, condensed, As-As bonded compounds. Several competitive exchange reactions involving compounds capable of exchanging H-, MeAs<, Me₂As-, and Me₂N- units influence the rate of reaction, as well as the product yields. The reactions involving >AsN < />NH, >AsN < />AsH, >AsN < / >AsN < ,AsN < / AsAs < ,> AsN < />AsAs</>AsH, $>AsAs < /-AsH_2$, $(MeAs)_5$, $>AsAs < /(MeAs)_5$, $(MeAs)_5 / >AsH$ and $(MeAs)_5 / >AsH$ -AsH₂ systems have been examined to determine their relative significance in the reactions of MeAsH₂ with Me_2AsNMe_2 and its N-B bonded BH₃ adduct.

Introduction

Mechanistic studies of the reactions involved in the synthesis of As-As bonded compounds have received little attention in the literature [1-3]. The ¹H NMR spectroscopic investigations of the reactions of Me₂AsH with Me₂AsX (X = Cl, Br, I or CN) indicate the reversible nature of these reactions in producing Me₂AsAsMe₂ [1]. Some rapid exchange processes involving >AsH/HX and >AsX/>AsAs< systems also occur in the solution. Similar studies [2, 3] on the reactions of MeAsH₂ with MeAsX₂ (X = Cl, Br, or I) to yield (MeAs)₅ and As-As bonded polymers (chains and ladder structures) suggest the presence of several competing equilibria involving different com-

pounds in the reaction mixture. On the basis of a detailed ¹H NMR study [3], the reaction of MeAsH₂ with MeAsI₂ has been proposed to occur through formation of the unstable Me(H)AsAs(I)Me, which undergoes several condensation reactions with MeAsH₂, MeAsHI and MeAsI₂ to yield ladder polymers of the general formula (MeAs)_x and several other uncharacterized As-As bonded oligomers.

Recently, we found [4] that Me₂AsH reacts irreversibly with Me₂AsNMe₂ and its N-B bonded BH₃ adduct to give Me₂AsAsMe₂. The ¹H, ¹³C and/or ¹¹B NMR studies of these reactions suggest that the Me₂AsH/Me₂AsNMe₂ reaction proceeds faster initially, but the overall rate of reaction is slower than that of the Me₂AsH/Me₂AsNMe₂·BH₃ reaction. This is a consequence of the presence of mainly an >AsN < />NH exchange process in the Me₂AsH/ Me₂AsNMe₂ system that is absent in the Me₂AsH/ $Me_2AsNMe_2 \cdot BH_3$ system due to formation of Me₂NH·BH₃. In both systems, other exchange processes involving >AsAs</ >AsH, >AsAs</ >AsAs<, and/or >AsAs </ >AsN< systems occur, but these are of minor importance in influencing the overall rate of formation of $Me_2AsAsMe_2$.

No reports are found in the literature concerning the reactions of primary arsines with dialkylaminodialkylarsines. Therefore, we undertook a multinuclear NMR investigation of the reactions involving the $>AsH_2/>AsN \le$ system to elucidate their mechanisms and to characterize and determine the importance of any exchange reactions occurring in the reaction mixture. In this paper, we report a comprehensive NMR study of the reactions of MeAsH₂ with Me₂AsNMe₂ and Me₂AsNMe₂·BH₃. Furthermore, an NMR investigation of several independent reaction systems has been carried out to establish their relative significance in influencing the rate of formation of different As-As bonded compounds and product yields.

Experimental

Standard high vacuum line techniques and a Vacuum Atmospheres Model HE-43 Dri-lab equipped

^{*}Author to whom correspondence should be addressed.

with a Model HE-493 Dri-Train were used for storing and handling of all compounds. Me₂NH (Matheson Gas Products) was dried over sodium metal and was distilled in the vacuum line prior to use. THF- d_8 , toluene-d₈ and Me₄Si were purchased from Aldrich chemical company and were stored over molecular sieves. Diborane(6) [5], Me₂AsNMe₂ (108 °C) [6], $Me_2AsAsMe_2$ (60 °C/25 torr) [7], (MeAs)₅ (178 °C/ 15 torr) [8], Me₂AsH (36 $^{\circ}$ C) [9], Me₂AsCl (106 $^{\circ}$ C) [10], MeAsH₂ [11], Me₂AsN $Me_2 \cdot BH_3$ [12], Et₂AsNEt₂ (58 °C/8 torr) [13], and Me₂AsNEt₂ [11], $Me_2 AsN\overline{Me_2 \cdot BH_3}$ (80.5 °C/90 torr) [14] were synthesized by previously reported methods. Et₂AsNMe₂ (132 °C/549 torr) was synthesized by the reaction of Et₂AsI with Me_2NH by a method [6] analogous to that reported for Me₂AsNMe₂. The purity of all compounds was checked by NMR spectroscopy prior to use.

¹H, ¹¹B, and ¹³C NMR spectra were recorded on a Nicolet 300 MHz multinuclear FT NMR spectrometer operating at 300.1, 96.3 and 75.4 MHz, respectively. Chemical shift values for the ¹¹B resonance were measured relative to $BF_3 \cdot OEt_2$, high field shift being negative. ¹H and ¹³C NMR chemical shifts were measured with respect to tetramethylsilane as an internal reference. All NMR spectra were obtained in toluene-d₈ as the solvent. All the reactions were protected from exposure to light to minimize photochemical side reactions involving (MeAs)₅. The integration of the peaks in the ¹H NMR spectra of a sample was done with respect to the constant integration value of TMS throughout a study. See spectral data below for all NMR assignments.

Reactions of $MeAsH_2$ with Me_2AsNMe_2 , $Me_2As-NMe_2 \cdot BH_3$, $Me_2AsAsMe_2$ or $(MeAs)_5$; $(MeAs)_5$ with Me_2NH , Me_2AsH , $Me_2AsAsMe_2$ or Me_2AsNMe_2 ; and Et_2AsNEt_2 with Me_2AsNMe_2

The reactions of MeAsH₂ with equimolar amounts of Me_2AsNMe_2 (2.0 mmol), $Me_2AsNMe_2 \cdot BH_3$ (2.0 mmol), $Me_2AsAsMe_2$ (1.0 mmol) or (MeAs)₅ (1.0 inmol); (MeAs)₅ with stoichiometric amounts of Me₂NH (1.0 mmol), Me₂AsH (1.0 mmol), Me₂AsAs-Me₂ (1.0 mmol) or Me₂AsNMe₂ (1.0 mmol); and Et₂AsNEt₂ (1.0 mmol) with Me₂AsNMe₂ (1.0 mmol) were carried out in toluene-d₈ using the following procedure. A stoichiometric amount of the less volatile compound dissolved in enough toluene-d₈ to maintain a constant 4 ml total solution volume and a drop of TMS were added to an NMR tube (10 $mm \times 22.5$ cm, pyrex) equipped with a greaseless vacuum stopcock. The tube was degassed using standard vacuum line techniques. An equimolar amount of the more volatile compound was condensed at −196 °C into the NMR tube. The tube was sealed, agitated gently at -95 °C (toluene slush), and inserted into the precooled $(-90 \, ^{\circ}\mathrm{C})$ probe of the NMR spectrometer. Each reaction was then followed

at the selected temperature intervals over a range of -80 to -10 °C by recording ¹H, ¹³C and, where appropriate, ¹¹B NMR spectra as a function of time. The studies were restricted to a maximum temperature of -10 °C due to the low boiling point of Me₂NH and the instability of Me₂AsNMe₂·BH₃ [12].

The following is a list of NMR spectral data (values in ppm) independently determined in this laboratory at -10 °C in toluene-d₈ solution on prepurified or synthesized compounds identified in the reaction mixtures.

¹H Spectral Data

 $(MeAs)_{5}$: 1.54, 1.50 and 1.48. $Me_2AsAsMe_2$: 0.96. Me_2AsNMe_2 : 0.79 (Me_2As) and 2.42 (Me_2N) . Me_2As . $\overline{NMe_2} \cdot BH_3$: 0.82 (Me_2As) and 2.09 (Me_2N) . Et_2As . NEt_2 : 1.00 $(CH_3CH_2N, t, {}^{3}J(HH) = 7.1)$, 2.86 (CH_3-CH_2N, q) , and 1.04–1.48 (CH_3CH_2As, m) . Et_2As . NMe_2 : 1.01–1.52 (CH_3CH_2As, m) , and 2.55 (Me_2N) . Me_2AsNEt_2 : 0.85 (Me_2As) , 0.97 $(CH_3CH_2N, t, {}^{3}J(HH) = 7.1)$ and 2.80 (CH_3CH_2N, q) . Me_2AsH : 0.77 $(Me_2As, d, {}^{3}J(HH) = 7.0 Hz)$ and 2.39 (AsH, s). Me_2NH : 2.17. $Me_2NH \cdot BH_3$: 1.96 $(Me_2N, d, {}^{3}J(HH) = 5.7 Hz)$ and 3.99 (NH, q). $MeAsH_2$: 0.69 $(MeAs, t, {}^{3}J(HH) = 7.2 Hz)$ and 1.96 (AsH_2, q) .

¹¹B Spectral Data

 $Me_2AsNMe_2 \cdot BH_3$: -11.36 (q, ¹*J*(B-H) = 98.7 Hz). $Me_2NH \cdot BH_3$: -14.05 (q, ¹*J*(B-H) = 97.7 Hz).

¹³C Spectral Data

 $(MeAs)_5$: 3.78, 5.23, and 6.81 $({}^{1}J(CH) = 134.9)$ Hz). Me₂AsAsMe₂: 5.94 (${}^{1}J(CH) = 132.6$ Hz). Me₂As-NMe₂: 9.70 (Me₂As, ${}^{1}J(CH) = 130.6$ Hz, ${}^{3}J(CH) =$ 4.0 Hz) and 41.92 (Me₂N, ${}^{1}J(CH) = 132.7$ Hz, ${}^{3}J(CH) = 5.3$ Hz). Me₂AsNMe₂·BH₃: 12.63 (Me₂As, ${}^{1}J(CH) = 132.7$ Hz) and 47.76 (Me₂N, ${}^{1}J(CH) =$ 138.4 Hz). Et_2AsNEt_2 : 10.56 (CH₃CH₂As, ¹J(CH) = 126.4), 20.84 (CH₃CH₂As, ${}^{1}J$ (CH) = 130.6), 16.19 (CH₃CH₂N, ${}^{1}J$ (CH) = 124.9, ${}^{2}J$ (CH) = 2.4 Hz) and 44.49 (CH₃CH₂N, ${}^{1}J$ (CH) = 132.2, ${}^{2}{}^{3}J$ (CH) = 4.64). Et₂AsNMe₂: 10.51 (CH₃CH₂As, ${}^{1}J$ (CH) = 126.4), 19.50 (CH₃CH₂As, ${}^{1}J(CH) = 130.6$ Hz), and 42.58 $(Me_2N, {}^{1}J(CH) = 132.6 \text{ Hz}, {}^{3}J(CH) = 5.2 \text{ Hz}). Me_2As$ NEt₂: 11.99 (Me₂As, ${}^{1}J(CH) = 130.3$ Hz, ${}^{3}J = 4.0$ Hz), 15.51 (CH₃CH₂N, ${}^{1}J(CH) = 125.1$ Hz, ${}^{2}J(CH) =$ 2.4 Hz), and 43.94 (CH₃CH₂N, ${}^{1}J$ (CH) = 132.2 Hz, ², ${}^{3}J = 4.7$ Hz). Me₂AsH: 1.43 ppm (${}^{1}J(CH) = 132.5$ Hz, ${}^{2,3}J(CH) = 3.0$ Hz). Me₂NH: 38.87 (${}^{1}J(CH) =$ 131.9 Hz and ${}^{3}J(CH) = 6.0$ Hz). Me₂NH·BH₃: 43.82 $({}^{1}J(CH) = 1.38.7 \text{ Hz}, {}^{2,3}J(CH) = 4.6 \text{ Hz}). \text{ MeAsH}_{2}:$ -8.74 (¹*J*(CH) = 134.4 Hz, ^{2, 3}*J*(CH) = 3.0 Hz).

Results and Discussion

Reaction of MeAsH₂ with Me₂AsNMe₂

The ¹H and ¹³C NMR spectra of an equimolar mixture of MeAsH₂ and Me₂AsNMe₂ in toluene-d₈

solution showed no reaction over the temperature range of -80 to -20 °C. After 20 min at -10 °C, low intensity peaks were observed due to Me₂NH, Me₂AsH, Me₂AsAsMe₂ and uncharacterized As-As bonded oligomeric compounds. The ¹H NMR peaks assigned to the Me₂N-moieties of Me₂AsNMe₂ and Me₂NH exhibited considerable line broadening associated with Me₂N group exchange [4, 15]. After $2\frac{1}{2}$ h, three low intensity peaks attributed to the polycyclic (MeAs)₅ appeared in the ¹H NMR spectrum in an area ratio of 2:1:2 [16].

As the reaction progressed, the intensities of the ¹H and ¹³C NMR peaks associated with (MeAs)₅, Me₂AsAsMe₂, Me₂AsH and Me₂NH increased; the line width of the Me₂N ¹H NMR peak narrowed as more Me₂AsNMe₂ was consumed; and the intensities of the resonances assigned to Me₂AsNMe₂ and MeAsH₂ decreased. A disproportionate decrease in the intensities of the Me₂AsNMe₂ was noted. After 23 h, all of the Me₂AsNMe₂ was consumed.

With additional time, the ¹H and ¹³C NMR spectra showed a significant decrease in the intensities of the peaks assigned to Me₂AsAsMe₂ and MeAsH₂ with a concomitant increase in the intensities of the (MeAs)₅ and Me₂AsH resonances. After 32 h, the ¹H and ¹³C NMR spectra indicated that the overall reaction achieves equilibrium. Very low intensity peaks $\delta_{\rm C} = -3.69, 0.38, 7.08, 7.19, 7.57$ and 8.78 ppm and $\delta_{\rm H} = 0.91, 0.93, 0.95, 1.02, 1.05$ and 1.07 ppm may be attributed to MeAs \leq groups in uncharacterized As—As bonded oligomers. The ¹H NMR intensity data at equilibrium indicate the presence of 86% characterized compounds [6% MeAsH₂, 22% Me₂AsH, 5% Me₂AsAsMe₂, 5% (MeAs)₅ and 48% Me₂NH] and 14% uncharacterized As—As bonded oligomers.

The above results coupled with previous data reported by Rheingold *et al.*, on the MeAsH₂/MeAsI₂ system [3] suggest that the overall reaction of MeAsH₂ with Me₂AsNMe₂ to give (MeAs)₅ is complex and involves a series of condensation reactions and competing exchange equilibria. We propose that via the formation of a concerted, four-centered activated intermediate [3, 17] initially the As-N and As-H bonds cleave and Me₂NH and the unstable intermediate, Me₂AsAs(H)Me, form. The latter then undergoes a facile exchange to yield the symmetrical diarsines, Me₂AsAsMe₂ and Me(H)AsAs(H)Me.

 $MeAsH_2 + Me_2AsNMe_2 \longrightarrow$

$$Me_2NH + Me_2AsAs(H)Me$$

 $2Me_2AsAs(H)Me \longrightarrow$

 $Me_2AsAsMe_2 + Me(H)AsAs(H)Me$

Subsequent condensation and exchange reactions give

 Me_2AsH and the $Me(H)As(AsMe)_xAs(H)Me$ species, which cyclize via $MeAsH_2$ elimination to $(MeAs)_5$.

This formation of Me(H)AsAs(H)Me and Me(H)-As(AsMe)_xAs(H)Me is analogous to that of Me(H)-AsAs(I)Me and Me(H)As(AsMe)_xAs(I)Me as proposed [3] in the MeAsH₂/MeAsI₂ system. Several competing exchange equilibria that involve reactants, different intermediate species, and products (discussed below) influence the relative rates of consumption of Me₂AsNMe₂, Me₂AsAsMe₂, MeAsH₂, and Me₂AsH at different stages of (MeAs)₅ formation; the stoichiometric ratios of the products; and the Me₂N-moiety spectral line width.

Reaction of $MeAsH_2$ with $Me_2AsNMe_2 \cdot BH_3$

The ¹H, ¹¹B, and ¹³C NMR spectra of an equimolar mixture of MeAsH₂ and Me₂AsNMe₂•BH₃ in toluened₈ solution also showed no reaction over the -80 to -20 °C temperature range. After 30 min at -10 °C, very low intensity NMR peaks assignable to Me₂NH• BH₃, Me₂AsAsMe₂, Me₂AsH and uncharacterized As-As bonded compounds were observed in the spectra. The reaction proceeded very slowly with time. After 4 h, the ¹H and ¹³C NMR spectra indicated complete consumption of Me₂AsAsMe₂. The Me₂AsAsMe₂ peak then reappeared after $17\frac{1}{2}$ h and the presence of new resonances assignable to (MeAs)₅ was observed.

No significant spectral changes were noted after 40 h when all the Me₂AsNMe₂·BH₃ was consumed. The ¹H NMR intensity data indicate the presence of 86% characterized [9% MeAsH₂, 23% Me₂AsH, 3% Me₂AsAsMe₂, 3% (MeAs)₅ and 48% Me₂NH·BH₃] and 14% uncharacterized compounds in the reaction mixture. The ¹H and ¹³C NMR spectra of the latter consisted of numerous weak resonances at $\delta_{\rm H}$ and $\delta_{\rm C}$ values previously noted in the MeAsH₂/Me₂AsNMe₂ reaction and assigned to As–As bonded oligomers.

These results suggest that the reaction of MeAsH₂ with Me₂AsNMe₂·BH₃ yields Me₂NH·BH₃ and all the arsenic-containing products observed in the MeAsH₂/Me₂AsNMe₂ reaction. The absence of line broadening in the ¹H NMR spectrum of the peaks associated with Me₂N-moieties suggests that exchange involving Me₂N- groups does not occur in this system, since Me₂NH is preferentially bound to BH₃ [4]. Also the slower consumption of Me₂As-NMe₂·BH₃ relative to that of Me₂AsNMe₂ in the MeAsH₂/Me₂AsNMe₂ system is undoubtedly a consequence of the lowered basicity of the nitrogen atom in the N-B adduct [4].

The stoichiometric ratio of the products obtained for both the studied systems is essentially the same at equilibrium. However, a comparison of the ratio at the point of consumption of $Me_2AsNMe_2 \cdot BH_3$ or Me_2AsNMe_2 indicates a significantly lower Me_2AsH : $Me_2AsAsMe_2$ ratio for the $MeAsH_2/Me_2AsNMe_2 \cdot BH_3$ system than for the $MeAsH_2/Me_2AsNMe_2$ system. This suggests that the bonding of the BH₃ to the nitrogen atom in $Me_2AsNMe_2 \cdot BH_3$ also diminishes the relative significance of exchange processes (see discussion below) that involved Me_2AsNMe_2 in the previously studied system.

Characterization of Exchange Processes

Previously established [4] exchange processes AsN < / >NH,involving the AsAs </>AsH,>AsAs<//> undoubtedly occur in the MeAsH₂/Me₂AsNMe₂ system, since Me₂AsAsMe₂ and Me₂AsH are present as reaction products. All except >AsN</>NH and >AsN</>AsAs< processes are also present in the $MeAsH_2/Me_2AsNMe_2 \cdot BH_3$ system. Several additional exchange processes involving (MeAs)₅ and MeAsH₂ with Me₂AsNMe₂, Me₂AsNMe₂·BH₃, Me₂NH and Me₂AsH could possibly also be important in influencing the rate of reaction as well as the relative product yields. Therefore, we investigated independently these possible exchange reactions. In each case, a 1:1 mole ratio of potential reactants was studied under the same conditions as in the MeAsH₂/Me₂AsNMe₂ and $MeAsH_2/Me_2AsNMe_2 \cdot BH_3$ systems. The results are summarized below.

The NMR spectral data of an equimolar mixture of $(MeAs)_5$ and Me_2NH and of $(MeAs)_5$ and $MeAsH_2$ indicated no reaction over the temperature range of -80 to -10 °C.

(MeAs)₅ undergoes exchange with Me₂AsAsMe₂ at -80 °C to yield Me₂As(AsMe)_xAsMe₂ compounds. At -10 °C, the reaction reached equilibrium in 7 days. The NMR intensity data indicate the presence of 74% characterized [38% (MeAs)₅, and 36% Me₂As-AsMe₂] and 26% uncharacterized species in the reaction mixture. These results are in agreement with those of Knoll *et al.* [18] suggesting the formation of equilibrium mixtures of different As-As bonded compounds in which Me₂AsAsMe₂ and (MeAs)₅ predominate because of the relatively large value of the pertinent ring-chain equilibrium constants.

 $(MeAs)_5$ reacted slowly with Me₂AsH at -10 °C to yield Me₂AsAsMe₂, MeAsH₂ and uncharacterized As-As bonded oligomeric species. The intensity data at equilibrium (44 h) indicate the presence of 84% characterized [29% Me₂AsH, 41% (MeAs)₅, 5% Me₂AsAsMe₂, and 9% MeAsH₂] and 16% uncharacterized compounds in solution.

The reaction involving (MeAs)₅ and Me₂AsNMe₂ occurred slowly at -10 °C to produce Me₂AsAsMe₂, As-As bonded oligomers and unidentified products containing the Me₂N- moiety. At equilibrium (4 days), the intensity data indicate the presence of 81% characterized compounds $[10\% \text{ Me}_2\text{AsAsMe}_2, 32\% \text{ Me}_2\text{AsNMe}_2$, and 39% (MeAs)₅] and 19% uncharacterized species in the reaction mixture.

MeAsH₂ reacted with Me₂AsAsMe₂ at -80 °C to produce Me₂AsH and As-As bonded oligomers.

Decoupling of the quartet at $\delta_{\rm H} = 2.05 \text{ ppm} (>AsH)$ collapsed the $\delta_{\rm H} = 0.94 \text{ ppm}$ doublet (MeAs \leq). This suggests the presence of a terminal Me(H)As- moiety in an oligomeric compound. At -40 °C, this quartet disappeared with the concomitant appearance of the peaks associated with (MeAs)₅. The intensity data at equilibrium (24 h, -10 °C) indicate the presence of 88% characterized [10% MeAsH₂, 61% Me₂AsH, 10% Me₂AsAsMe₂ and 7% (MeAs)₅] and 12% uncharacterized species in the reaction mixture.

In order to examine the possibility of self exchange of the Me₂As- moiety in Me₂AsNMe₂, we investigated the reaction of Me₂AsNMe₂ with Et₂AsNEt₂. A slow reaction occurred at -80 °C to yield Me₂AsNEt₂ and Et₂AsNMe₂. The intensity data (-10 °C) indicate the presence of 23% each of Et₂AsNMe₂ and Me₂AsNEt₂ and 27% each of Me₂AsNMe₂ and Et₂AsNMe₂ and Et₂AsNMe₂ in solution at equilibrium.

Our studies on the reaction of $MeAsH_2$ with Me_2AsNMe_2 , (a),

$$MeAsH_2 + Me_2AsNMe_2 \longrightarrow$$

$$Me_2AsAs(H)Me + Me_2NH \rightleftharpoons \dots$$
 (a)

suggest that the exchange process (b)

 $Me_2AsNMe_2 + Me_2NH \Longrightarrow$

$$Me_2AsNMe_2 + Me_2NH$$
 (b)

is of prime importance in slowing down the rate of reaction when significant concentrations of Me_2As -NMe₂ and Me₂NH are present [4]. Processes (c), (d), (e) and (f)

 $Me_2AsNMe_2 + Me_2AsH \longrightarrow$

$$Me_2AsAsMe_2 + Me_2NH$$
 (c)

 $Me_2AsAsMe_2 + MeAsH_2 \Longrightarrow$

$$Me_2AsAs(H)Me + Me_2AsH \longrightarrow \dots$$
 (d)

 $Me_2AsAsMe_2 + (MeAs)_5 \rightleftharpoons$

$$Me_2As(MeAs)_5AsMe_2 \rightleftharpoons \dots$$
 (e)

 $(MeAs)_5 + Me_2AsH \longrightarrow$

$$Me_2As(MeAs)_4As(H)Me \rightleftharpoons \dots$$
 (f)

are very significant in increasing the rate of consumption of starting materials and in influencing the relative yields of the products. The faster rate of consumption of Me_2AsNMe_2 as compared to that of $MeAsH_2$ in the reaction mixture can be attributed to the occurrence of competitive reactions of $MeAsH_2$ and Me_2AsH (produced in the reaction mixture) with Me_2AsNMe_2 , processes (a) and (c), respectively. Reaction (c) should be favored over (a), since the As-H bond strength is lower in Me_2AsH than in $MeAsH_2$ [19]. Thus, Me_2AsNMe_2 is consumed in reactions (a) and (c); while some of the $MeAsH_2$ remains unreacted. The reactions represented by equations (g), (h), (i), and (j), undoubtedly occur

 $Me_2AsAsMe_2 + Me_2AsH \Longrightarrow$

$$Me_2AsAsMe_2 + Me_2AsH$$
 (g)

 $Me_2AsAsMe_2 + Me_2AsAsMe_2 \rightleftharpoons$

$$Me_2AsAsMe_2 + Me_2AsAsMe_2$$
 (h)

 $Me_2AsAsMe_2 + Me_2AsNMe_2 \rightleftharpoons$

$$Me_2AsAsMe_2 + Me_2AsNMe_2$$
 (i)

 $Me_2AsNMe_2 + Me_2AsNMe_2 \rightleftharpoons$

$$Me_2AsNMe_2 + Me_2AsNMe_2$$
 (j)

in the reaction mixture. Due to the indistinguishability of reactants and products in these processes, they could not be independently studied using our NMR techniques. Reaction (k) is of no significance under the conditions of the studied reactions.

$$(MeAs)_5 + Me_2AsNMe_2 \longrightarrow$$

 $Me_2As(MeAs)_5NMe_2 \overleftrightarrow{} \dots \qquad (k)$

In the reaction of MeAsH₂ with Me₂AsNMe₂·BH₃, (1),

 $MeAsH_2 + Me_2AsNMe_2 \cdot BH_3 \longrightarrow$

$$Me_2AsAs(H)Me + Me_2NH \cdot BH_3 \rightleftharpoons \dots$$
 (1)

bonding of BH_3 to Me_2NH and Me_2AsNMe_2 eliminates the occurrence of processes (b), (i), (j) and (k). Those reactions represented by (d), (e), (f), (g), (h), and (m) occur in

 $Me_2AsNMe_2 \cdot BH_3 + Me_2AsH \longrightarrow$

 $Me_2AsAsMe_2 + Me_2NH \cdot BH_3$ (m)

the MeAsH₂/Me₂AsNMe₂·BH₃ system and influence the rate of reaction and the relative product yields. Since the reaction of MeAsH₂ with Me₂AsAsMe₂, (d), is more facile than that with Me₂AsNMe₂·BH₃, (1), the Me₂AsAsMe₂ initially produced in the MeAsH₂/ Me₂AsNMe₂·BH₃ system is consumed within 4 h at -10 °C. Once the concentration of the MeAsH₂ is sufficiently low and that of the Me₂AsH produced from reactions (d) and (1) sufficiently high, a net formation of $Me_2AsAsMe_2$ from competing reactions (m) and (d) is observed. At the point of consumption of the As-N bonded starting material, the Me_2AsH : $Me_2AsAsMe_2$ stoichiometric ratio was noted to be significantly lower in the $MeAsH_2/Me_2AsNMe_2 \cdot BH_3$ system than in the $MeAsH_2/Me_2AsNMe_2$ system. This difference in stoichiometric ratios appears to be a consequence of the slower rate of consumption of

Me₂AsH in process (m) than in process (c). In addition to the above delineated exchange processes, several other MeAs</Me₂As-/Me(H)Asmoiety exchange reactions involving different oligomeric intermediate compounds are possible in the MeAsH₂/Me₂AsNMe₂ and MeAsH₂/Me₂AsNMe₂•BH₃ systems. These could not be studied independently, since the intermediate oligomers are unstable and unisolable. All the exchange reactions and the various steps that lead to oligomeric As-As bonded species probably involve the formation of a concerted, fourcentered activated intermediate [3, 17] which undergoes bond dissociation and formation processes to give the different exchange products observed in the reaction mixtures.

References

- 1 A. L. Rheingold, E. J. Pleau and W. T. Ferrar, *Inorg. Chim. Acta*, 22, 215 (1977).
- 2 A. L. Rheingold and J. M. Bellama, J. Chem. Soc., Chem. Commun., 1058 (1969).
- 3 A. L. Rheingold, J. E. Lewis and J. M. Bellama, *Inorg. Chem.*, 12, 2845 (1973).
- 4 V. K. Gupta, L. K. Krannich and C. L. Watkins, *Inorg. Chem.*, 1986, in press.
- 5 G. F. Freeguard and L. H. Long, Chem. Ind., 471 (1965).
- 6 K. Modritzer, Chem. Ber., 92, 2637 (1959).
- 7 R. W. Bunsen, Annalen, 42, 14 (1842).
- 8 P. S. Elmes, S. Middleton and B. O. West, Aust. J. Chem., 23, 1559 (1970).
- 9 W. M. Dehn and B. B. Wilcox, Am. Chem. J., 35, 1 (1906).
- 10 W. Steinkopf and W. Mieg, Chem. Ber., 53, 1013 (1920).
- 11 W. M. Dehn, Am. Chem. J., 33, 101 (1905).
- 12 R. K. Kanjolia, L. K. Krannich and C. L. Watkins, J. Chem. Soc., Dalton Trans., 1986, in press.
- 13 A. Tzschach and W. Lange, Z. Anorg. Allg. Chem., 326, 280 (1964).
- 14 F. Kober, Z. Anorg. Allg. Chem., 400, 285 (1973).
- 15 O. Adler and F. Kober, Chem. Ztg., 100, 235 (1976).
- 16 C. L. Watkins, L. K. Krannich and H. H. Sisler, *Inorg. Chem.*, 8, 385 (1969).
- J. C. Lockhart, 'Redistribution Reactions', Academic Press, New York, 1970, p. 158.
- 18 F. Knoll, H. C. Marsmann and J. R. Van Wazer, J. Am. Chem. Soc., 91, 4986 (1969).
- 19 D. C. McKean, I. Torto and A. R. Morrisson, J. Phys. Chem., 86, 307 (1982).