Preparation and Reactivity of New Dioxygen Adducts of Rhodium Containing Phosphine Ligands

ANTONINO MORVILLO and MARIO BRESSAN

Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Centro di Studio sulla Stabilitd e Reattiviti dei Composti di Coordinazione, C.N.R., Universitci di Padova, via Marzolo 1, 35131 Padua, Italy

(Received May 22, 1986)

 T_1 in $\langle T \rangle$ is T_2 $\langle T \rangle$ (NBD)] $\sum_{i=1}^n$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2$ and $[Rh(LL)]BF_4$ $(LL = diphosphines, bidentate)$ phosphorus and sulfur or nitrogen ligands) react with dioxygen to give 1:1 adducts of various stabilities, the ligands being stable towards oxidation. The mononuclear $[Rh(dppe)(H_2O)O_2]BF_4$, which has been isolated in the solid state, oxidizes inorganic occi isolated in the sond state, oxidizes inorganic the corresponding sulfato and di-nitrato derivatives, the corresponding sulfato and di-nitrato derivatives, respectively, as solid compounds. The $[Rh(LL)O₂]$ ⁺ cations also catalyze the aldol-condensation of acetone. ESR studies on the essentially diamagnetic $\left[Rh(dppe)(H_2O)O_2 \right] BF_4$ complex show the presence of significant amounts of a paramagnetic rhodium(II)-superoxide species.

Introduction

 $\overline{\mathbf{A}}$ Activation of oxygen by modium-complexes remains of current interest because of the wellestablished role of dioxygen-adducts, or of complexes which may form such adducts, in catalytic oxidations of organic substrates $[1]$. me substrates [1].

we have previously demonstrated $[2]$ that the atalytic O_2 -oxidation of algenes and/of alcohols by
Db(LL) 1^+ complexes (LL = diphosphines, dithio- $\text{[Kn}(\text{LL})_2$ complexes [LL - diphosphines, difficulty ethers, mixed phosphine-thioethers) proceeds through a reaction sequence in which the dioxygen adducts $[Rh(LL)₂O₂]⁺$ are key intermediates. We also found that other cationic complexes of rhodium(I) of the type $[Rh(LL)(diene)]^+$ and $[Rh(LL)]^+$ similarly behave as catalysts for oxygen-transfer reactions. For these two, however, unlike the related $[Rh(LL)₂]$ ⁺ cations, no evidence for dioxygen-adduct formation has been reported so far. This study is concerned with aspects of the oxygen-activation by these classes of r hodium (I) complexes with a number of LL ligands, namely the diphosphines $Ph_2P(CH_2)_nPPh_2$ (n = 2, dppe; $n = 3$, dppp), the mixed ligands Ph₂P(CH₂)_nSPh $(n = 2, \text{PSPh} - C_2; n = 3, \text{PSPh} - C_3)$, and Ph₂P(CH₂)₂- $(\alpha$ -Py $)$ (PPy).

Abstract Results and Discussion Results and Discussion

 $31P$ NMR spectra of the solutions of $Rh(L)$ -I INNIX Spectra Of the solutions of $[MPL]$
NBD)IBF_a complexes (NBD = 1,5_norbornadiene) $\begin{bmatrix} \text{ADD} \text{J} \text{B} \text{I} \text{I} \end{bmatrix}$ complexes $\begin{bmatrix} \text{ADD} & \text{I} \text{J} \text{J} \text{B} \end{bmatrix}$ and completely display doublets, falling in different fields according
to the different Δ -ring effects expected for five- or o die unieiem Δ -mig encers capecidu for not of t_{in} the solutions results in t_{in} and detectable changes $\frac{3}{R}$ in the solutions results in no detectable changes (1500) ⁺ derivatives (LL = dppe, dppp, PSPh-C2) (NBD)]⁺ derivatives (LL = dppe, dppp, PSPh-C₂),
whereas for the complexes containing the mixed whereas for the complexes containing the image $\sum_{i=1}^{\infty}$ of $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ at higher fields (Table I), of new doublets is observed at higher fields (Table I), which are attributed to the peroxo-species [Rh(LL)- $(NBD)O₂$ ⁺ (eqn. (1)).

 $[Rh(LL)(diene)]^+ + O_2 \rightleftharpoons [Rh(LL)(diene)O_2]^+$ (1)

The amount of the dioxygen-adduct formed never Fire amount of the dioxygen-addred formed from exceeds the 1:3 molar ratio with the non-oxygenated species. The above systems are not stable when kept under

The above systems are not stable when *Kept* under oxygen for prolonged periods, within days the distinctive doublets of $[Rh(L)]$ diene) O_2 ⁺ and/or $[Rh(LL)(diene)]^+$ found in the ³¹P NMR spectra $[Kn(LL)(u, e)]$ round in the replacement sompletely disappear and are replaced by very broad signals. GLC-MS analysis of the solutions, once the organometallic species have been precipitated by ether, showed the presence of the presence of the presence of f free dience π $\frac{1}{2}$ include the monochelate species species species species species species species species nvestigated directly the monocherate species
Db(II)⁺ which can be prepared *in situ* by placing μ_{u} and μ_{u} and μ_{u} approximate times, the corresponding the correction in the correction of the correction sponding $\left[\text{Kn}(LL)\right]$ derivatives $\left[\frac{4}{3}\right]$. In the presence of O_2 , the diagnostic doublets in the ^{31}P NMR spectra of $[Rh(L)]^+$ are immediately replaced by the broad signals already observed for the aged, oxygenated solutions of the $[Rh(LL)(NBD)]^+$ complexes, discussed above.

 T_1 is interacted above. the interaction has been carried out on a preparative scale in the case of $[Rh(dppe)]BF_4$, which, in butanone, takes up rapidly (10 min) 1 mol of $O₂$ per mol of Rh. From the reaction mixture a pale-brown product was recovered of composition [Rh(dppe)- $(H_2O)O_2$]BF₄. Conductivity measurements (Onsager's equation) in methanol suggest a monomeric structure

Complex	dppe	dppp	$PSPh-C2$	$PSPh-C_3$	PPy
$[Rh(LL)2]+ b$	57.6	7.4	63.7	23.5°	45.5
	(133)	(130)	(163)	(166)	(171)
$[Rh(LL)]^+$	78.1	36.9	74.4	35.8	68.4
	(205)	(188)	(190)	(175)	(168)
$[Rh(LL)(NBD)]^+$	55.1	14.1	54.9	15.6	30.2
	(156)	(148)	(159)	(154)	(166)
[Rh(LL) ₂ O ₂]'	51.3; 44.3 ^d	14.9; 12.7 ^b	50.9; 53.5 ^b	11.2; 11.3 ^b	26.9; 30.2 ^b
	(126.9)	(122; 85)	(132; 119)	(129; 119)	(144; 120)
	7.7 ^e	30 ^e	22.7 ^e	$24.5^{\rm e}$	24 ^e
$[Rh(LL)O2]$ ⁺	55 ^f	21 ^f	54 ^f	24 ^f	57 ^f
$[Rh(LL)(NBD)O2]+$	g	g	g	14.2	28.3
				(148)	(151)

TABLE I. ³¹P NMR Data for Rhodium Complexes^a

Q acetonede, unless otherwise stated; ppm, positive downfield from phosphoric acid (85%) external standard; between paren- \ln acetone- a_6 , uness otherwise stated; ppin, positive downlield from phosphoric acid (65%) external standard; between parel theses $J(P-Rh)$, in Hz; chemical shifts for the free ligands (CDCl₃) occur at -12.3 (dppe), -17.0 (dppp), -17.0 (PSPh-C₂), -17.2 (PSPh-C₃) and -17.0 (PPy). bCD_2C_1 , $cSmall$ amounts of another species are al ^bCD₂Cl₂. ^cSmall amounts of another species are also present (4.9 ppm, $J(P-Rh) =$ ^dFor [Rh(dppe)₂O₂]Cl at -80 °C (see quotation 15). ^e $J(P-P)$, in Hz. ^fVery broad 125 Hz), likely the 'trans' isomer. d For [Rh(d signals. g Not observed (20 °C, 1 atm of O₂).

 \mathbb{E} . 1. ESR spectra of [Rn(uppe)(H₂O)O₂]

for the 1:l electrolyte, thus ruling out other possible $\sum_{n=1}^{\infty}$ is the type found, for the type for $\sum_{n=1}^{\infty}$ bonding modes, of the type found, for example, in the dioxygen bridged dimer $[RhCl(PPh₃)₂O₂]$ [5].
Although essentially diamagnetic (Gouy's

Although essentially diamagnetic (Gouy's The substantially peroxidic nature of bonded method), the present oxygen-adduct presents a weak, dioxygen in the $[Rh(L)O₂]$ ⁺ complexes is conmethod), the present oxygen-adduct presents a weak, dioxygen in the $[Rh(LL)O₂]$ ⁺ complexes is con-
unresolved ESR signal in the range $g = 1.9-2.1$, in the firmed by the typical reactivity of the compounds unresolved ESR signal in the range $g = 1.9 - 2.1$, in the firmed by the typical reactivity of the compounds solid state (powder). In dichloromethane glass at with inorganic oxides such as SO_2 and N_2O_4 (Scheme solid state (powder). In dichloromethane glass at with inorganic oxides such as SO_2 and N_2O_4 (Scheme 110 K the ESR spectrum appears to be composite 1). The reaction with sulfur dioxide readily yields the 110 K the ESR spectrum appears to be composite 1). The reaction with sulfur dioxide readily yields the (Fig. 1), consisting of two components. The first pale-yellow sulfates $[Rh(LL)(H_2O)_2SO_4]BF_4$ ($\nu(SO_4)$) (Fig. 1), consisting of two components. The first pale-yellow sulfates $[Rh(LL)(H_2O)_2SO_4]BF_4(\nu(SO_4)$ component, with $g_{\parallel} = 2.03$ and $g_{\perp} = 2.00$, is very at 1255,950 and 660 cm⁻¹), while, in the presence of similar to the spectra reported for the superoxide ion N_2O_4 the di-nitrato derivatives $[Rh(L)](H_2O)_2$.
[6], the second one $(g'_1, g'_2 = 2.09$ and $g'_3 = 1.97$ is $(ONO_2)_2|BF_4$ are formed $(\nu(NO_3))$ at 1520, 1270 and [6], the second one $(g'_1, g'_2 = 2.09$ and $g'_3 = 1.97$) is indicative of a rhodium(II) species [7]. The signal indicative of a rhodium(II) species [7]. The signal 960 cm^{-1}). Again, ³¹P NMR spectra of the above related to the superoxide ion shows a hyperfine struc-
coordinatively unsaturated complexes are scarcely related to the superoxide ion shows a hyperfine structure of ³¹P (A_{\perp} = 14 X 10⁻⁴, A_{\parallel} = 21 X 10⁻⁴ cm⁻¹), significant at room temperature, whereas at -90 °C indicating a weak interaction with the metal; as the broad signals expected, hyperfine couplings with $103R$ h are not of fine structure.

detectable, one is nuclear to the small value of its nuclear term is nuclear to the small value of α etectable, owing to the small value of its nuclear. magnetic moment. Approximate concentration of the paramagnetic species was estimated in the order of less than 10% for 0.01 M solutions of the complex, thus indicating that only minor quantities of the $Rh(II) - O_2$ species are present, possibly in equilibrium with the diamagnetic oxygen-adduct (eqn. (2)), or, alternatively, derived from its initial state of decomposition.

$$
[(LL)RhI...O2]+ \Rightarrow [(LL)RhH...O2-]+
$$
 (2)

 \mathbf{r} is not a spectra of the $[\mathbf{Kn}(\mathbf{LL})\mathbf{O}_2]$ cations consist of broad signals even at low temperature (-80^oC) . The presence of small amounts of the $Rh^{II} - O_2$ paramagnetic species may account for the unresolved structure of the spectra. Moreover, it has to be considered that coordinatively unsaturated complexes of rhodium(III), and these adducts can be considered as such, usually undergo rapid intramolecular exchange [8], which further contributes to
the broadening of the NMR signals. \overline{a} is the contract of the following \overline{a}

at 1255, 950 and 660 cm⁻¹), while, in the presence of N_2O_4 the di-nitrato derivatives $[Rh(L)](H_2O)_2$ significant at room temperature, whereas at -90° C the broad signals begin to sharpen, showing evidences

Scheme 1.

Attempts to force the interaction between the $W(III)$ and $W(III)$ and $W(III)$ and $W(III)$ $\frac{1}{2}$ compreses and other electrophile $\frac{1}{4}$ $\frac{1}{4}$, $\frac{1}{4}$ $\frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ and solid a 1,1'-dicyanostyrene) were unsuccessful and solid products with erratic contents of olefin were obtained. It should be remembered that other metaldioxygen adducts, namely $[M(PPh_3),O_2]$ $(M = Pd$, Pt), readily react with activated olefins [9] and ketones [IO], yielding stable peroxometallacyclic derivatives. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, sections the present present $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (LL)O $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\frac{1}{2}$ adducts. By contrast, the present $\frac{1}{2}$ reactions are effective catalysis in oxygen-trainsier $\frac{1}{2}$ actions to $\frac{1}{2}$ allylic alcohols.
In the presence of equivalent amounts of free LL,

the $[Rh(LL)O₂]⁺ complexes immediately and quanti$ tatively convert into the corresponding bis-chelate divery convert mo incorresponding bis-circlate the discussion and dividend and (3) .

$$
[Rh(LL)O2]+ + LL \rightarrow
$$

$$
[Rh(LL)2O2]+ \Rightarrow [Rh(LL)2]+ + O2 (3)
$$

The above reaction has proven to be much slower The above reaction has proven to be much slower when carried out in acetone, where complete conversion to the bis-chelates is achieved after several hours. This strongly suggests a close interaction between acetone and the rhodium complexes. Indeed, in the presence of catalytic amounts of $[Rh(L)Q_2]^+$, dimerization of acetone was observed, with formation of diacetone alcohol, together with smaller quantities of 2-methyl-2-pentene-4-one. Significantly, an analogous behavior has been previously reported [111 for the neutral peroxo-bridged derivative $[(\text{COD})_2]$. $Rh₂O₂$, which has been proposed to act as a baseinitiator for the aldol-condensation of ketones. The peroxo species must then be converted into a hydroperoxide-derivative Rh^{III} -OOH, of which we could not obtain direct evidence so far. Recently [12], however, the first example of a stable hydroperoxide-derivative of rhodium(II1) has been reported, allowing the above hypothesis to become more firmly grounded.

Experimental

IR spectra were obtained with a Perkin-Elmer 457 spectrophotometer. 31P NMR spectra were recorded on a JEOL FQ 90 X spectrometer operating at 36.23 MHz. ESR spectra were recorded on a JEOL PE 3 X spectrometer and GC-MS spectra were obtained with a VG MM 16 F spectrometer equipped with a DAN1 3008 F glc instrument.

The ligands $PSPh-C_2$ [13] and PPy [14] were prepared by literature methods; the ligand $PSPh-C₃$ was prepared from $PhS(CH_2)_3Br$ and NaPPh₂ in boiling THF. The $[Rh(LL)_2]BF_4$ and $[Rh(LL)]$ - (NBD) BF₄ complexes were prepared as reported elsewhere [2], by reacting [Rh(NBD)acac] and LL: satisfactory elemental analyses (C, H, N, S) were obtained (Table II). The $[Rh(LL)]BF_4$ complexes were prepared *in situ* by Halpern's procedure [4] and characterized in solution by 3'P NMR spectra.

 $[Rh(dppe)(H_2O)O_2]BF_4$ was prepared by keeping an acetone solution of $[Rh(dppe)]BF_4$ under O_2 for 20 min. Adding ethyl ether pale brown crystals separated, which were recrystallized from dichloromethane-ethyl ether. $v(O_2)$ is found at 840 cm⁻¹.

 $[Rh(dppe)(H_2O)_2(SO_4)]BF_4$ and $[Rh(dppe) (H₂O)₂(NO₃)₂$ | BF₄ were obtained by bubbling SO₂ and N_2O_4 respectively through methanolic solutions

TABLE II. Analytical Data for Rhodium Complexes

Compound	<i>Anal.</i> , found (calc.)			
	$C(\%)$	H $(\%)$	$X(\%)$	
$[Rh(dppe)O_2(H_2O)]BF_4^a$	48.4 (48.94)	4.3(4.11)	8.0(7.52):O	
$[Rh(dppe)(SO_4)(H_2O)_2]BF_4$	43.7 (43.36)	4.0(3.92)	$4.5(4.45)$:S	
$[Rh(dppe)(NO3)2(H2O)2]BF4$	41.5 (41.74)	4.1(3.77)	3.5(3.74):N	
$[Rh(PPy)_2]BF_4$	58.0 (58.96)	5.0(4.95)	3.4(3.62):N	
$\lceil Rh(PPy)(NBD)\rceil BF_4$	54.1 (54.40)	4.6 (4.74)	$2.4(2.44)$:N	

'Plot of A, VS. N1'2, according to the Onsager equation A, = A, + *AN1'2,* gives A, = 86.8 cm2 equiv.-' and *A =* 320 S cm2 FIOU OF Λ_e is Λ , according to the Onsager equation.

 $\frac{1}{2}$ $\frac{1}{2}$ μ [Kn(uppe) $(n_2\sigma)$ σ_2] or α . After so min, emplement was added and yellow crystals separated, which were
recrystallized from dichloromethane-ethyl ether.

Acknowledgements

The authors wish to thank Dr. G. Agostini, Dip. di The authors wish to thank $D\Gamma$, G. Agosthii, $D\Gamma$, and $D\Gamma$ Chimica Fisica, for discussion of the ESR spectra and Mr. A. Ravazzolo, C.N.R., for helpful assistance. This work was supported in part by the Ministero Pubblica
Istruzione, Italy.

References

- I. Mimoun, M. M. Perez Machirant and I. Seree de Roch, J. Am. Chem. Soc., 100, 5437 (1978); (b) H. Bönnemann, W. Numez and D. M. M. Rohe, *Helv. Chim.* Acta, 66, 177 (1983); (c) G. Read and J. Shaw, J. Chem. Soc., Chem. Commun., 1313 (1984); (d) E. D. Nyberg, D. C. Pribich and R. S. Drago, J. Am. Chem. Soc., 105, 3538 (1983); (e) R. Tang, F. Mares, N. Neary and D. E. Smith, J. Chem. Soc., Chem. Commun., 274 (1979).
- *J. Organomet.* Chem., 280, 139 (1985); (b) M. Bressan,

F. Morandini and P. Rigo, *J. Organomet.* Chem., 247, \blacksquare Morandini and P. Rigo, J. Organomer. Chem., 247, C8 (1983); (c) M. Bressan, F. Morandini and P. Rigo, Inorg. Chim. Acta, 77, L139 (1983); (d) A. Morvillo and M. Bressan, J. Mol. Catal., submitted for publication.

- 3 P. E. Garrou, Chem. Rev., 81, 229 (1981).
- 4 J. Halpern, D. P. Riley, A. S. C. Chan and J. J. Pluth, J. Am. Chem. Soc., 99, 8055 (1978).
- 5 M. J. Bennet and P. B. Donaldson, J. Am. Chem. Soc., 6 B. 3307 (1971).
- 6 B. M. Hoffman, D. L. Diemente and F. Basolo, J. Am. Chem. Soc., 92, 61 (1979).
- 7 (a) C. Busetto, A. D'Alfonso, F. Maspero, G. Perego and A. Zazzetta, J. Chem. Soc., Dalton Trans., 1828 (1977); (b) J. B. Raynor, R. D. Gillard and J. D. Pedrosa de *Besus, J. Chem. Soc., Dalton Trans., 1165 (1982).*
- 8 A. J. Deeming and G. P. Proud, *Inorg. Chim. Acta, 100*, 223 (1985). *9* $\frac{223}{1985}$ *.*
- A. Sheldon and J. Chem., 94, 115 (1975).
- 10 R. Ugo, G. H. Zanderighi, A. Fusi and D. Carreri, J. Am. Chem. Soc., 102, 3745 (1980).
- 11 F. Sakurai, H. Suzuki, Y. Moro-oka and T. Ikawa, J. Am. Chem. Soc., 102, 1794 (1980).
- *Organomet. Chem., 286, 247 (1985).*
- *Drganomet. Chem.,* 286, 247 (1985). 13 P. Rigo and M. Bressan, *Inorg. Chem., 14*, 1491 (1975).
- 14 E. Uhlig and M. Maaser, *Z. Anorg. Allg. Chem.*, 344, 205 (1966). *a* (1966) .
- . **K.** J