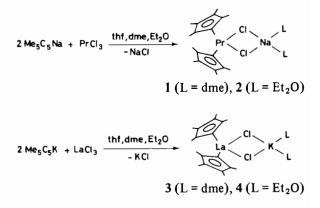
145

Some Novel Halide- and Alkyl-derivatives of Pentamethylcyclopentadienyllanthanum, -praseodymium, -ytterbium and -lutetium*

ILSE ALBRECHT, EKKEHARDT HAHN, JOACHIM PICKARDT and HERBERT SCHUMANN Institut fur Anorganische und Analytische Chemie, Technische Universitat Berlin, Berlin 12, F.R.G. Received January 15, 1985

Abstract

LaCl₃ and PrCl₃ react with NaC₅Me₅ or KC₅Me₅ in tetrahydrofuran in the presence of ether or dimethoxyethane (dme) to form the new complexes $(C_5Me_5)_2La(\mu-Cl)_2K(L_2)$, $(C_5Me_5)_2Pr(\mu-Cl)_2Na(L_2)$ $(L = Et_2O, dme)$ and, $C_5Me_5PrCl_3Na(Et_2O)$. These compounds react with LiCH₃ or LiCH₂SiMe₃ forming new alkyl derivatives of the type $(C_5Me_5)_2Ln(\mu-CH_3)_2Li(tmed)$ (Ln = La, Lu, tmed = tetramethylethylenediamine), [Li(dme)_3] [$(C_5Me_5)_2Lu(CH_2-SiMe_3)_2$] and [Li(tmed)_2] [$C_5Me_5Ln(CH_3)_3$] (Ln = Yb, Lu). The structure of $(C_5Me_5)_2Pr(\mu-Cl)_2Na-(dme)_2$ was determined by X-ray diffraction.


Introduction

For all lanthanoids, compounds of the type $(C_5-H_5)_3Ln$ have been synthesized but complexes with two cyclopentadienyl groups are only known for the heavier lanthanoids [1]. Using pentamethylcyclopentadienyl as a bulky substituted cyclopentadienyl ligand, Tilley and Andersen [2] as well as Wayda and Evans [3] succeeded in preparing bis(pentamethylcyclopentadienyl) derivatives of neodymium. We wish to report the synthesis and characterization of the corresponding compounds of two earlier elements of the lanthanoid series.

Results and Discussion

Pentamethylcyclopentadienyllanthanum- and praseodymium Chlorides

Praseodymiumtrichloride reacts in tetrahydrofuran with pentamethylcyclopentadienylsodium in the molar ratio 1:2 to give the compounds $(C_5Me_5)_2Pr$ - $(\mu$ -Cl)₂Na(L₂) with L = Et₂O or dme. Attempts to prepare the corresponding lanthanum complex in the same manner were unsuccessful. However by using pentamethylcyclopentadienyl potassium it was possible to synthesize the lanthanum compounds:

The lanthanum complexes 3 and 4 are obtained in low yields (10-15%) as colorless crystals after recrystallization from dme or ether. The praseodymium derivatives 1 and 2 which are light green in color, crystallize better than the lanthanum derivatives with yields up to 55%. The compounds have been characterized by complete elemental analysis [4].

Equimolar amounts of pentamethylcyclopentadienylsodium and $PrCl_3$ react in diethylether-tetrahydrofuran with formation of a mono(pentamethylcyclopentadienyl)praseodymium trichloride complex:

$$Me_{5}C_{5}Na + PrCl_{3} \xrightarrow{\text{thf}, Et_{2}O} - 0 Pr \xrightarrow{Cl} Cl Na (Et_{2}O)$$

The NMR spectra of the lanthanum compound 4 show only small shifts of the ¹H and ¹³C signals in comparison with the corresponding signals of the previously reported complex $(C_5Me_5)_2Lu(\mu-Cl)_2$ -Li(Et₂O)₂ [5], which is also diamagnetic. The ¹H NMR spectrum of 4 shows a singlet at 2.05 ppm for the C₅Me₅ protons, and in the ¹³C NMR spectrum there are signals at 11.3 $(C_5(CH_3)_5)$ and 118.63 ppm $(C_5(CH_3)_5)$.

© Elsevier Sequoia/Printed in Switzerland

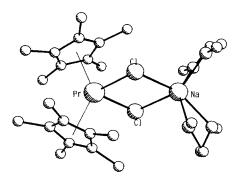
^{*}Organometallic Compounds of the Lanthanoides. Part 26. Presented at the NATO ASI workshop in Organo-felement Chemistry in Maratea (Italy), September, 1984.

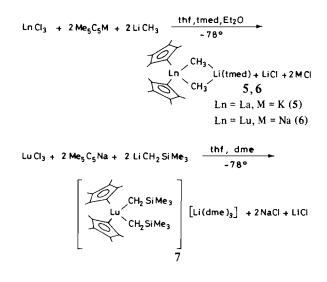
TABLE I. ¹H NMR Data for $(C_5Me_5)_2Pr(\mu-Cl)_2Na(dme)_2$ (1) and $(C_5Me_5)_2Pr(\mu-Cl)_2Na(Et_2O)_2$ (2) as a Function of Temperature (δ in ppm, 80 MHz, in thf-d₈).

<i>Т</i> (°С)	$\delta C_5 Me_5 (1)$	δCH ₃ (1)	$\delta \mathrm{CH}_2\left(1\right)$	δC5Me5 (2)
	15.77	1.03	0.83	16.2
-70	14.78	1.04	1.04	
65	14.35	1.1	1.18	
-50	12.98	1.53	1.94	
-30				12.5
-24	11.16	2.3	2.92	
0	9.77	2.65	3.19	10.7
30	8.7	2.82	3.27	9.5
78				7.9

The praseodymium compounds 1 and 2 are paramagnetic. Therefore the resonance signals in the ¹H NMR spectrum are broadened in comparison to the corresponding diamagnetic compounds of La or Lu and are tremendously shifted. For the resonance signals of the protons of the C_5Me_5 groups a downfield shift could be observed, whereas the signals of the coordinated solvent in compound 1 are shifted to higher field. Table I shows the temperature dependence of the chemical shift in the ¹H NMR spectra of 1 and 2.

The praseodymium complex 1 crystallizes in the orthorhombic space group $P2_1ca$ (non-standard setting of $Pca2_1$, No. 29) with a = 16.032(11) Å, b = 16.503(6) Å, c = 25.084(9) Å, V = 6636.6 Å³, Z = 8 and $\rho_{calcd} = 1.372$ g/cm³. The structure was solved from 4345 unique reflections collected at 138(2) K with $1^{\circ} \le 2\theta \le 44.4^{\circ}$. 3240 reflections $(I \ge 3\sigma(I))$ were included in the least-squares sums leading to a preliminary R value of 0.0481 ($R_w = 0.0613$) (Fig. 1).




Fig. 1. One of the two molecules per asymmetric unit in the structure of $(C_5Me_5)_2Pr(\mu-Cl)_2Na(dme)_2$.

1 is the first bis(pentamethylcyclopentadienyl)praseodymium chloride complex. A dicyclopentadienylmetal halide complex of Pr has until now only been obtained with the very bulky bis(trimethylsilyl)cyclopentadienyl ligand. This complex [6] is a dimer with two chlorine bridges between the metal centers, whereas 1 is a sodium chloride adduct of $(C_5Me_5)_2$ PrCl.

The praseodymium atom is coordinated in a distorted tetrahedral fashion by the centroids of pentamethylcyclopentadienyl ligands and two the two chlorine atoms. The sodium atom resides at the center of a distorted octahedron, formed by two chlorine and four oxygen atoms of the dme ligands. The average Pr-Cn⁵ distance of 2.78 Å compares very well with the distance observed for $[\{(Me_3Si)_2C_5H_3\}_2PrCl]_2$ (2.76 Å). The Pr-Cl_(ave) separation, however differs for these two complexes $(2.734 \text{ Å for } (C_5 \text{Me}_5)_2 \text{Pr}(\mu-\text{Cl})_2 \text{Na}(\text{dme})_2$ VS. 2.81 Å for the bis(trimethylsilyl)cyclopentadienyl compound). Other important molecular parameters for 1 are $Cp-Pr-Cp_{(ave)} = 135.2^{\circ}$, $Pr-Cl-Na_{(ave)} = 93.1^{\circ}$, $Cl-Pr-Cl_{(ave)} = 83.1^{\circ}$.

Pentamethylcyclopentadienyllanthanum and -lutetium Alkyl Derivatives

LaCl₃ or LuCl₃ react with pentamethylcyclopentadienylsodium or -potassium and methyllithium or trimethylsilylmethyllithium in tetrahydrofuran in the presence of tetramethylethylenediamine (tmed) or dme at -78 °C with formation of bis(pentamethylcyclopentadienyl)lanthanoid dialkyllithium complexes, which are stabilized by tmed or dme:

YbCl₃ or LuCl₃ react under the same conditions with an equimolar amount of Me_5C_5Na and four equivalents of methyllithium only with formation of the homoleptic complexes $[Li(tmed)]_3[LnMe_6]$, which can be prepared by other routes [7]. We have been successful in synthesizing and characterizing by an X-ray structure the first monocyclopentadienyl trialkyl derivatives of the lanthanoids by the reaction of LnCl₃ (Ln = Yb, Lu) with Me_5C_5Na and CH₃Li in a molar ratio of 1:1:3 in the presence of tmed:

TABLE II. ¹ H and ¹³ C NMR Data for $(C_5Me_5)_2La(\mu-CH_3)_2Li(tmed)$ (5), $(C_5Me_5)_2Lu(\mu-CH_3)_2Li(tmed)$ (6), $(C_5Me_5)_2Lu(CH_2-Lu)_2Li(tmed)$ (6), $(C_5Me_5)_2Lu(CH_2-Lu)_2Li(tmed)$ (6), $(C_5Me_5)_2Lu(CH_2-Lu)_2Li(tmed)$ (6), $(C_5Me_5)_2Lu(CH_2-Lu)_2Li(tmed)$ (7)
SiMe ₃) ₂ Li(dme) ₃ (7) and C ₅ Me ₅ Lu(CH ₃) ₃ Li(tmed) ₂ (9). δ in ppm, 80 or 20.149 MHz, thf-d ₈ .

¹ H NMR	5	6	7	9
δC ₅ Me ₅	1.97	1.93	1.88	2.05
δCH ₂			-1.86	
δCH ₃	-1.43	-1.77	-0.11	-1.34
δ(tmed/dme)	2.25/2.4	2.28/2.44	3.26/3.42	2.29/2.44
¹³ C NMR				
δC ₅ Me ₅	115.91	111.2	112.39	112.57
$\delta C_5 (CH_3)_5$	11.11	12.1	12.76	11.23
5CH ₂	25.87			
δCH ₃	25.83	22.2	6.27	28.7
δ (tmed/dme)	45.88/58.26	46.0/58.8	58.79/72.55	45.79/58.1

$$LnCl_3 + 3LiCH_3 + Me_5C_5Na \frac{thf, tmed}{-78°C}$$

$$\left[-\sqrt[6]{(Ln(CH_3)_3)}\right] [Li(tmed)_2] + NaCl + 2 LiCl$$

$$(8,9)$$

Ln = Yb (8), Lu (9)

The extremely sensitive compounds can be recrystallized from diethyl ether. The ¹H and ¹³C NMR spectra of 5, 6, 7 and 9 show the expected singlet signals (Table II). Compounds 5 and 6 are neutral complexes in ether with two CH₃-bridges between the lanthanoid and lithium, as shown by X-ray structural analysis with $(C_5H_5)_2Er(\mu-CH_3)_2$ -Li(tmed) [8]. We predict an ionic formulation for 7 because of the bulky trimethylsilylmethyl ligands as well as for 8 and 9. The X-ray structural analysis of 9 [9] proves this prediction (Fig. 2), showing a

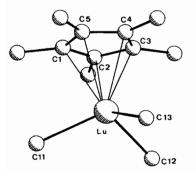


Fig. 2. PLUTO drawing of the anion in $[Li(tmed)_2][C_5-Me_5Lu(CH_3)_3]$.

tetrahedrally coordinated lutetium atom. Three unequally bonded methyl groups and the centroid of the pentamethylcyclopentadienyl ring form this tetrahedron. Important bond distances are: Lu-C11: 2.56(2) Å, Lu-C12: 2.39(2) Å, Lu-C13: 2.59(2) Å, Lu-(C1 to C5)_(ave): 2.70(2) Å.

Acknowledgements

We thank the Fonds der Chemischen Industrie for generous support of this work as well as for a 'Doktoranden-Stipendium' (E.H.). This work was also supported by Deutsche Forschungsgemeinschaft and a special grant of the Technische Universität Berlin within the project-collaboration TUB-MIT 'Materialien für neue Technologien'.

References

- 1 H. Schumann, Angew. Chem., 96, 475 (1984); Angew. Chem., Int. Ed. Engl., 23, 474 (1984).
- 2 T. D. Tilley and R. A. Andersen, Inorg. Chem., 20, 3267 (1981).
- 3 A. L. Wayda and W. J. Evans, *Inorg. Chem.*, 19, 2190 (1980).
- 4 H. Schumann and I. Albrecht, unpublished results.
- 5 P. L. Watson, J. F. Whitney and R. L. Harlow, *Inorg. Chem.*, 20, 3271 (1981).
- 6 M. F. Lappert, A. Singh, J. L. Atwood and W. E. Hunter, J. Chem. Soc., Chem. Commun., 1190 (1981).
- 7 H. Schumann, J. Müller, N. Bruncks, H. Lauke, J. Pickardt, H. Schwarz and K. Eckardt, Organometallics, 3, 69 (1984).
- 8 H. Schumann, H. Lauke, E. Hahn, M. J. Heeg and D. van der Helm, Organometallics, 4, 321 (1985).
- 9 H. Schumann, I. Albrecht, J. Pickardt and E. Hahn, J. Organomet. Chem., 276, C5 (1984).