Synthesis of *cis*-[Co(en)₂(MF₆)₂]MF₆ (M = As or Sb): Cobalt(III) Complexes Containing η^1 -MF₆⁻ Characterizable by ¹⁹F NMR

PHILIP A. W. DEAN

Department of Chemistry, University of Western Ontario, London, Ont., N6A 5B7, Canada

Received October 14, 1985

Recently, Hersh [1] has reported η^1 -SbF₆⁻ bound to a transition metal in (Me₂PhP)(CO)₃(NO)W(μ -F)-SbF₅. In this compound the SbF₆⁻ was characterized in the solid state by X-ray analysis and in CD₂Cl₂ solution by the ¹⁹F-³¹P nuclear spin-spin coupling seen in the variable temperature ³¹P NMR spectrum. The ¹⁹F NMR spectrum was broad, and therefore, apparently, uninformative, the broadness being attributed to efficient quadrupolar coupling to ¹²¹Sb and ¹²³Sb (I = 5/2 and 7/2, respectively).

Described here are the reactions of *trans*-[Co(en)₂-Cl₂]Cl (1) with AgMF₆ and MF₅ (M = As or Sb) in liquid SO₂ which lead to Co(III) species in which the presence of η^1 -MF₆⁻ is shown by sharp reduced temperature ¹⁹F NMR spectra.

Experimental

Materials

 AsF_5 (Ozark-Mahoning, Inc.) was used as received, and SbF_5 (Ozark-Mahoning) was purified by double distillation under dry N₂ in glass apparatus. SO₂ (Matheson, Anhydrous Grade) was dried by standing in the gas phase over Linde 3A Molecular Sieves for at least 12 h before use. Ag powder (99.999%) was from Alfa.

Literature syntheses were used for 1 [2] and $AgAsF_6$ [3], and $AgSbF_6$ was prepared from Ag powder and SbF_5 in liquid SO_2 in the manner described for other SbF_6^{--} salts [4a].

Manipulations

A calibrated standard glass and Teflon vacuum line was used for transfers of AsF_5 and SO_2 and for vacuum-drying. All moisture-sensitive solids were handled in a glove box in which the dry N_2 atmosphere was maintained by circulation through traps cooled with liquid N_2 ; transfers of SbF_5 were made using an all-glass syringe. of NMR samples was carried out similarly but in smaller vessels having an NMR tube attached via a fine glass frit [4b]. Samples for UV–Vis spectroscopy in liquid SO₂ were prepared in a sealed glass tube having a quartz cell of 1 cm pathlength attached by a sidearm.

Spectroscopy

CW 94.1 MHz ¹⁹F NMR spectra were obtained using a Varian HA-100 spectrometer; C_6F_6 was used as an internal reference and data were converted to CF-Cl₃ as reference using δ (CFCl₃) = δ (C_6F_6) -164.9 [6]. FT 25.2 MHz ¹³C-{¹H} NMR spectra were measured using a Varian XL-100-15 spectrometer; as described previously [3], external dioxane/D₂O in the outer annulus of two concentric tubes was used as a reference/lock, and chemical shifts were converted to internal TMS as reference using δ_c (TMS in SO₂, int) = δ_c (dioxane in D₂O, ext) + 67.8. UV-Vis spectra were run on Coleman 124 or Beckman 24 recording spectrophotometers.

Analysis

Microanalyses were carried out by Alfred Bernhardt Mikroanalytisches Laboratorium. Chloride analyses were made using gravimetry [7].

Synthesis of $Co(en)_2(SbF_6)_3$ (2) and $Co(en)_2$ -(AsF₆)₃ (3)

In a sealed glass H-tube (see above) 1 was stirred with just less than 3 equivalents* of AgMF₆ in liquid SO_2 at room temperature. The poorly-soluble 1 reacts over a period of ca. 90 min** to give AgCl together with, first, an SO₂-insoluble pink substance, then the SO₂-soluble purple product. The productcontaining solution was separated by filtration from the insolubles which were washed several times with SO₂ to retrieve adhering product. By slow cooling of the opposite arm with liquid N_2 to remove the solvent, the product was obtained dry, then the arm containing it was separated by flame sealing. In the glove box, the product was transferred to a glass drying vessel to allow removal of final traces of SO_2 under vacuum. Both salts $Co(en)_2(MF_6)$ 3 were obtained in near-quantitative yield as highly water-sensitive glassy purple solids. Anal. Calc. for $C_4H_{16}As_3CoF_{18}N_4$: C, 6.44; H, 2.16; As, 30.13. Found: C, 6.57; H, 2.23; As, 29.92%. Anal. Calc.

Preparative reactions in liquid SO_2 were carried out at room temperature in sealed glass H-shaped reaction vessels, having the arms separated by a fine sinter, as described earlier [5]; in situ preparation

 $Co(en)_2(MF_6)_3$ is formed using AgMF₆/1 >3 but cannot be separated from the excess silver salt.

^{**1} undergoes no reaction with SO_2 alone in the same time period; there is an apparent slow conversion to the *cis*-compound on stirring in liquid SO_2 for many days.

Species	Solvent	Temperature (°C)	$\delta_{\mathbf{F}} \text{ in } -\text{CoF}_{\mathbf{br}} - M(F_{\mathbf{e}})_{4} - F_{\mathbf{t}}$ $(ppm)^{\mathbf{a}} - \cdots - (ppm)^{\mathbf{a}} - \cdots - ($			$J(F-F)$ in $-CoF_{br}-M(F_e)_4-F_t$ (Hz)		
			Fbr	F _e	Ft	$F_{br}-F_{e}$	$F_{br}-F_{t}$	$F_{e}-F_{t}$
$(en)_2 Co(SbF_6)_3^b$	SO ₂	-40	-308.3		-131.8	77 ^c	d	104 ^c
$(en)_2 Co(AsF_6)_3^b$	SO ₂	-40	-263.1	-52.0	-79.6	84 ^c	d	126 ^c
$Sb_2F_{11} - e$	SO_2	-60	-89.4	-109.1	-131.2	59	d	102
$Sb_2F_{11}^{-1}$	SO ₂ CIF	-94	-93.4	-114.6	-136.4	60	d	101
As_2F_{11} g	SO ₂ ClF	-140	21.1	-48.6	-85.0	51	d	127
F ₅ SbFAsF ₅ ^{-h}	CH_2Cl_2	96	-118	-118^{i}	-138.9 ⁱ	j	d	112 ⁱ
- •			-118	-50.5 ^k	-92.9^{k}	47 ^k	d	126 ^k
$[(H_3N)_5CoF]^{2+1}$	HF	-60			~-380			

TABLE I. Fluorine-19 NMR Spectroscopic Data for some species Containing η^1 -MF₆⁻ (M = As or Sb) and for [(H₃N)₅CoF]²⁺

^aRelative to external CFCl₃; shifts to higher frequency than the reference are taken as positive. ^bThis work; see text. ^cEsti-mated error ±2 Hz. ^dNot observed. ^eChemical shifts from ref. 11(a) are for the Cs⁺ salt; coupling constants are from ref. 11b. ^fRef. 11b; for the Bu₄N⁺ salt. ^gRef. 12. ^hRef. 13. ⁱF-on-Sb. ^jCould not be measured with certainty. ^kF-on-As. ¹Ref. 14.

for C₄H₁₆CoF₁₈N₄Sb₃: C, 5.41; H, 1.82; Sb, 41.21. Found: C, 5.54; H, 1.90; Sb, 40.92%.

Reaction of 1 with MF_5 (M = As or Sb) in SO₂

1 reacts with MF_5 (M = As or Sb) in SO₂ to give pink SO₂-insoluble products without sign of residual 1 when $2.5 \leq AsF_5/Co \leq 6.0$ or $2.0 \leq SbF_5/Co$ \leq 3.0. Above the higher ratios the product mixtures are purple and completely SO₂ soluble*. The insoluble pink intermediate products appear to be mixtures: from $AsF_5/1 = 3.25$, Anal. Calc. for Co(en)₂As₂Cl_{0.90}F_{12.10}: Cl, 5.40. Found: Cl, 5.42%; from $SbF_5/1 = 2.35$, Anal. Calc. for $Co(en)_2Sb_2$ -Cl_{2.1}F_{10.9}: Cl, 10.59. Found: Cl, 10.53%.

Results and Discussion

In SO₂, 1 reacts with three mols of AgMF₆ (M = As or Sb) to give purple products of composition $Co(en)_2(MF_6)_3$. These compounds are based on octahedral Co(III) with cis en ligands as shown by (a) the observation of two ¹³C NMR resonances ($\delta_c = 44.5, 49.3$ ppm (both resonances broad) for both salts) [8]; (b) the position and intensity of the visible absorption band (λ_{max} 502 nm, ϵ_{max} ca. 70 M⁻¹ cm⁻¹ for both salts) [9]; and (c) the reaction of the compounds with H₂O to give predominantly cis- $[Co(en)_2(OH_2)(OH)]^{2+}$ (identified by UV-Vis). The last noted reaction is so rapid that handling of the compounds even in a good dry box is difficult,

a contrast with the otherwise rather similar cis-

 $[Co(en)_2(O_3SCF_3)_2](O_3SCF_3)$ [10]. Details of the ¹⁹F NMR spectra of the compounds $Co(en)_2(MF_6)_2$ in liquid SO_2 are included in Table I. At ambient probe temperature the ¹⁹F NMR spectrum of 2 shows three broad resonances which sharpen at reduced temperature to a pattern of (from low to high shielding) a double-doublet and two quintets, relative intensities 4, 1 and 1. The doubledoublet and one quintet occur in the F-on-Sb region (by comparison with the corresponding region in the ¹⁹F NMR spectra of Sb₂F₁₁ and AsSbF₁₁ (see Table I)) while the second quintet is unusually highly shielded. Such high shielding has been reported previously for ¹⁹F attached to low-spin d⁶ centres [14, 15]. Of special note here, the highly shielded quintet occurs in the same general region as the ¹⁹F NMR signal of [(H₃N)₅CoF]²⁺ (see Table I). Clearly the chemical shifts and NMR pattern are consistent with the presence of the grouping** $Co^{III} - F_{br}$ - $(Sb(F_e)_4)-F_t$, an assignment strengthened by the values of $J(F_e-F_t)$ and $J(F_{br}-F_t)$ which also resemble those found for F-on-Sb in Sb_2F_{11} and $AsSbF_{11}$ (see Table I). Thus 2 must be cis-[(en)₂Co{(μ -F)-SbF₅}₂](SbF₆). No ¹⁹F NMR signal attributable to the uncoordinated octahedral SbF₆⁻ ion was found, but this signal is expected to be broad due to the quadrupolar properties of ^{121/123}Sb. In addition, no evidence was found for ${}^{2}J(F-Co-F)$; apparently this is zero or near-zero.

The ¹⁹F NMR spectral pattern found for 3 resembles that of 2; at reduced temperature it is com-

^{*}At concentrations typically used (ca. 0.5 M) slow crystallization occurs on standing at room temperature.

^{**}The subscripts, br, e, and t indicate bridging, equatorial and terminal fluorines, respectively.

prised of a double-doublet and quintet, relative intensities 4 and 1, in the F-on-As region (by comparison with same region in the spectra of As₂- F_{11} and AsSb F_{11} (see Table I)), and a highly shielded quintet, relative intensity 1. Here the occurrence of the grouping Co- F_{br} -(As(F_e)₄)- F_t is indicated; Again $J(F_e-F_t)$ and $J(F_{br}-F_t)$ resemble those found in simple models, As₂ F_{11} and AsSb F_{11} , and ²J-(F-Co-F) must be near zero. Thus 3 is cis-[(en)₂-Co{(μ -F)AsF_5}₂](AsF₆). Not unexpectedly no signal from the free octahedral AsF₆ is seen; this can be attributed to the quadrupolar nature of ⁷⁵As (I =3/2, 100% abundant).

If 1 is reacted with AgMF₆ in the ratio $2 \leq \text{Ag-MF}_6/\text{Co} < 3$ an SO₂-insoluble pink substance, mixed with AgCl, is formed along with soluble Co(en)₂-(MF₆)₃. Extraction of isolated insoluble material with water gives predominantly *cis*-[Co(en)₂Cl-(OH₂)]²⁺ in solution (by UV-Vis) and shows that formation of AgCl is quantitative. The pink products may thus be formulated *cis*-Co(en)₂Cl(MF₆)₂. As these are not highly water-sensitive, unlike 2 and 3, they probably do not contain coordinated MF₆⁻; they may be halogen-bridged dimers or polymers.

There is a direct reaction between 1 and SO₂ solutions of MF₅ (M = As or Sb). Qualitatively the reaction sequence resembles that found with AgMF₆. Pink insoluble products are found when $2.5 \le AsF_5/1 \le 6.0$ or $2.0 \le SbF_5/1 \le 3.0$, though these appear to be mixtures (see 'Experimental'), probably because of the complexity of the halogen abstraction and exchange reactions of the pentafluorides (e.g. ref. 11c). Soluble purple products are formed when larger amounts of MF₅ are used, and in solutions of these, Co-F-MF₄-F groupings are again detectable by ¹⁹F NMR.

Acknowledgements

I am grateful to the Natural Sciences and Engineering Research Council of Canada for financial support, to John M. Decesare and Thomas Vockeroth, summer students in 1974 and 1975, respectively, for technical assistance, and to Prof. J. B. Stothers of this Department for measuring ¹³C NMR spectra.

References

- 1 W. H. Hersh, J. Am. Chem. Soc., 107, 4599 (1985).
- 2 J. C. Bailar, Jr., Inorg. Synth., 2, 222 (1946).
- 3 P. A. W. Dean, D. G. Ibbott and J. B. Stothers, Can. J. Chem., 54, 166 (1976).
- 4 (a) P. A. W. Dean, J. Fluorine Chem., 5, 499 (1975);
 (b) Can. J. Chem., 51, 4024 (1973).
 5 T. Birchall, P. A. W. Dean and R. J. Gillespie, J. Chem.
- 5 T. Birchall, P. A. W. Dean and R. J. Gillespie, J. Chem. Soc. A, 1777 (1971); P. A. W. Dean, R. J. Gillespie and P. K. Ummat, Inorg. Synth., 15, 213 (1974).
- 6 P. A. W. Dean and D. G. Ibbot, *Inorg. Nucl. Chem. Lett.*, 11, 119 (1975).
- 7 A. I. Vogel, 'Quantitative Inorganic Analysis', 3rd edn., Longmans, London, 1961, p. 460.
- 8 D. A. House and J. W. Blunt, Inorg. Nucl. Chem. Lett., 11, 219 (1975).
- 9 M. Linhard and M. Weigel, Z. Anorg. Chem., 271, 101 (1952); F. Basolo, C. J. Ballhausen and J. Bjerrum, Acta Chem. Scand., 9, 810 (1955).
- 10 N. E. Dixon, W. G. Jackson, M. J. Lancaster, G. A. Lawrance and A. M. Sargeson, *Inorg. Chem.*, 20, 470 (1981).
- 11 (a) J. Bacon, P. A. W. Dean and R. G. Gillespie, *Can. J. Chem.*, 47, 1655 (1969); (b) 48, 3414 (1970); (c) 49, 1276 (1971).
- 12 P. A. W. Dean, R. J. Gillespie, R. Hulme and D. A. Humphreys, J. Chem. Soc. A, 341 (1971).
- 13 S. Brownstein, Can. J. Chem., 47, 605 (1969).
- 14 M. F. A. Dove, J. Fluorine Chem., 11, 317 (1978).
- 15 N. A. Matwiyoff, L. B. Asprey, W. E. Wageman, M. J. Reisfeld and E. Fukushima, *Inorg. Chem.*, 8, 750 (1969).