1,1'-Bis(diphenylphosphino)ferrocene Complexes of Molybdenum(II) and Tungsten(II)

PAUL K. BAKER*, STUART G. FRASER and PAUL HARDING

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL57 2UW, U.K

(Received December 12, 1985)

The unusual bidentate phosphine ligand 1,1'-bis-(diphenylphosphino)ferrocene has often been used as a ligand in organometallic chemistry. Cullen and co-workers have very recently reported the synthesis of a range of ferrocenylphosphine complexes, [Pd-Cl₂(L-L)], [Rh(L-L)(η^4 -norbornadiene)], and [Ni-Cl₂(L-L)] {L-L = Fe(η^5 -C₅H₄PR¹R²)(η^5 -C₅H₄PR³- \mathbb{R}^4) ($\mathbb{R}^1 - \mathbb{R}^4 = \mathbb{P}h$ or \mathbb{CMe}_3) [1]. In view of the wide range or organometallic complexes of the type $[MX_2(CO)_3L_2]$ (M = Mo and W; X = Cl, Br and I; L = phosphines) which are known [2], it is surprising that complexes of this type containing the bidentate phosphine ligand 1,1'-bis(diphenylphosphino)ferrocene have not been reported. In this communication we wish to report the synthesis of the new diiodide complexes $[MI_2(CO)_x(Ph_2PFePPh_2)]$ {M = Mo, x = 2 or 3; M = W, x = 3; Ph₂PFePPh₂ = 1, 1'-bis-(diphenylphosphino)ferrocene}, and the new compound [MoCl₂(CO)₂(Ph₂PFePPh₂)₂].

Experimental

 $[MI_2(CO)_3(NCMe)_2]$ [3] and $[Mo(\mu-Cl)Cl(CO)_4]_2$ [4] were prepared according to literature methods, and 1,1'-bis(diphenylphosphino)ferrocene was purchased from Strem Chemicals, Inc.

¹H NMR spectra were recorded on a Jeol FX60 NMR spectrometer (all spectra were calibrated against tetramethylsilane). Infrared spectra were recorded on a Perkin-Elmer 197 infrared spectrophotometer. Elemental analyses for carbon, hydrogen and nitrogen were recorded on a Carlo Erba Elemental Analyser MOD1106 (using a helium carrier gas).

$[MoI_2(CO)_2(Ph_2PFePPh_2)] \cdot CH_2Cl_2 (1)$

To $MoI_2(CO)_3(NCMe)_2$ (0.298 g, 0.578 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry argon was added Ph₂-PFePPh₂ (0.32 g, 0.577 mmol). The mixture was left stirring for 5 min after which time an orange precipitate was observed in the solution. This was filtered and dried under vacuum to afford [MoI₂-(CO)₂(Ph₂PFePPh₂)] •CH₂Cl₂ (yield = 0.50 g, 83%). Anal. Calc. for C₃₇H₃₀FeI₂MoO₂P₂Cl₂: C, 42.5; H, 2.9. Found. C, 42.7; H, 3.1%. At room temperature the ¹H NMR spectrum (CDCl₃) showed resonances at δ = 7.57 (brm, 20H, Ph), 5.3 (s, 2H, CH₂-Cl₂), 4.47 (brm, 8H, C₅H₄P). IR spectrum (CHCl₃): ν (CO) cm⁻¹ = 1920(s) and 1858(s). The complex [MoI₂(CO)₂(Ph₂PFePPh₂)] •NCMe was prepared in a similar manner from reaction of [MoI₂(CO)₃(NC-Me)₂] and Ph₂PFePPh₂ in acetonitrile.

$[MoI_2(CO)_3(Ph_2PFePPh_2)] \cdot 0.5CH_2Cl_2(2)$

In a precipitate of $[MoI_2(CO)_2(Ph_2PFePPh_2)]$ • NCMe (0.21 g, 0.21 mmol) in CH₂Cl₂ carbon monoxide was bubbled for 60 min. The precipitate dissolved and gave a red solution which upon removal of solvent gave red crystals of $[MoI_2(CO)_3(Ph_2-PFePPh_2)]$ •0.5CH₂Cl₂ (yield = 0.14 g, 68%). Anal. Calc. for C_{37.5}H₂₉FeI₂MoO₃P₂Cl: C, 43.7; H, 2.8. Found: C, 43.7; H, 3.1%. At room temperature the ¹H NMR spectrum showed resonances at δ = 7.47 (brm, 20H, Ph), 5.3 (s, 1H, CH₂Cl₂), 4.47 (brm, 8H, C₅H₄P) IR spectrum (CHCl₃). ν (CO) cm⁻¹ = 2015(s), 1965(s) and 1896(m).

$[WI_2(CO)_3(Ph_2PFePPh_2)]$ (3)

To WI₂(CO)₃(NCMe)₂ (0.32 g, 0.53 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry argon was added Ph₂PFePPh₂ (0.294 g, 0.53 mmol), and the mixture was stirred for 15 min. Removal of the solvent *in vacuo* afforded the analytically pure complex WI₂(CO)₃(Ph₂PFe-PPh₂) (yield 0.49 g, 86%). Anal. Calc. for C₃₇H₂₈-FeI₂O₃P₂W: C, 41.3; H, 2.6. Found: C, 41.4; H, 2.8%. At room temperature the ¹H NMR spectrum (CDCl₃) showed resonances at δ = 7.44 (m, 20H, Ph), 4.67 (brs, 4H, P–CH), 4.34 (brs, 4H, C–CH). IR spectrum (CHCl₃): ν (CO) cm⁻¹ = 2025(s), 1948(s) and 1906(s).

$[MoCl_2(CO)_2(Ph_2PFePPh_2)_2]$ (4)

[Mo(μ -Cl)Cl(CO)₄]₂ was prepared from Mo(CO)₆ (0.5 g, 1.9 mmol) by reaction with Cl₂ at -78 °C. To [Mo(μ -Cl)Cl(CO)₄]₂ in a propanone (20 cm³) solution of Ph₂PFePPh₂ (1.05 g, 1.9 mmol) was added, and the mixture was stirred for 12 h after which time a deep blue precipitate was observed in the solution. This was filtered and dried under vacuum (yield 0.45 g, 18%). *Anal.* Calc. for C₇₀H₅₆-Cl₂Fe₂MoO₂P₄. C, 63.1; H, 4.2. Found. C, 63.4, H, 4.1%. IR spectrum (CHCl₃): ν (CO) cm⁻¹ = 1962(m) and 1880(s).

^{*}Author to whom correspondence should be addressed

Results and Discussion

Microanalytical data (C, H and N), infrared spectroscopy, and ¹H NMR spectroscopy (see 'Experimental') support the formulation of the new complexes 1-4. It is interesting to note the bidentate phosphine ligand Ph₂P(CH₂)₂PPh₂ (dppe) reacts at room temperature [5] with $[Mo(\mu-I)I(CO)_4]_2$ to give the sevencoordinate complex [MoI2(CO)3(dppe)], whereas reaction of Ph₂PFePPh₂ with [MoI₂(CO)₃(NCMe)₂] in CH₂Cl₂ to give the '16-electron' complex [MoI₂- $(CO)_2(Ph_2PFePPh_2)] \cdot CH_2Cl_2$ (the CH_2Cl_2 solvate is confirmed by repeated elemental analyses and ¹H NMR spectroscopy). This is probably due to the large 'cone-angle' [6] of Ph₂PFePPh₂, and it has been reported [1] that the $[NiX_2(Ph_2PFePPh_2)]$ (X = Cl or Br) complexes have tetrahedral geometry which has been suggested to be due to the steric bulk of the Ph₂PFePPh₂ ligand, which is in contrast to the $[NiX_2(L-L)]$ {X = Cl and Br; L-L = Ph₂P(CH₂)- PPh_2 and $Ph_2P(CH_2)_2PPh_2$ complexes which exhibit square-planar geometry [7]. Although other '16-electron' complexes of the type $[MX_2(CO)_2L_2]$ $(M = Mo \text{ and } W; X = Cl, Br \text{ and } I; L = PPh_3$ and PEt₃) are known [8-12], they are more common for molybdenum than tungsten, and hence it is not surprising that reaction of Ph₂PFePPh₂ with [WI₂- $(CO)_3(NCMe)_2$ in CH_2Cl_2 gives the seven-coordinate tricarbonyl complex $[WI_2(CO)_3(Ph_2PFePPh_2)]$. The molybdenum complex [MoI₂(CO)₂Ph₂PFePPh₂)]-NCMe can be converted to the seven-coordinate $[MoI_2(CO)_3(Ph_2PFePPh_2)]$. tricarbonyl complex 0.5CH₂Cl₂ (the 0.5CH₂Cl₂ solvate is confirmed by repeated elemental analyses and ¹H NMR spectroscopy) simply by bubbling carbon monoxide through a CH_2Cl_2 solution of $[MoI_2(CO)_2(Ph_2PFePPh_2)]$ -NCMe.

It has been noted that the stabilities of the tricarbonyls $[MX_2(CO)_3(dppe)]$ towards further attack by dppe decreases in the order I > Br > Cl and W >Mo, and that $[MoCl_2(CO)_3(dppe)]$ could only be isolated with great difficulty [2]. Hence it is not surprising that equimolar quantities of $[Mo(\mu-Cl)-$ Cl(CO)₄]₂ and Ph₂PFePPh₂ react in propanone to afford only the seven-coordinate bis(Ph₂PFePPh₂) complex *cis*-[MoCl₂(CO)₂(Ph₂PFePPh₂)₂] with one of the Ph₂PFePPh₂ ligands with bidentate coordination, and the other bonded as a monodentate ligand. Reaction of the dibromo complex [Mo(μ -Br)Br-(CO)₄] with Ph₂PFePPh₂ gave a mixture of products. We are currently investigating the chemistry of these complexes, in particular the catalytic activity in view of the recent work of Bencze and co-workers [13, 14] who have reported that the complexes [MX₂-(CO)₃L₂] (M = Mo or W; X = Cl or Br; L = PPh₃ or AsPh₃) act as catalysts for the ring opening polymerisation of norbornene.

Acknowledgement

S.G.F. thanks the S.E.R.C. for support.

References

- 1 I. R. Butler, W. R. Cullen, Tae-Jeong Kim, S. J. Rettig and J. Trotter, Organometallics, 4, 972 (1985).
- 2 R. Colton, Coord. Chem. Rev., 6, 269 (1971).
- 3 P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., in press.
- 4 R. Colton and I. B. Tomkins, Aust. J. Chem., 19, 1143 (1966).
- 5 M. W. Anker, R. Colton, C. J. Rix and I. B. Tomkins, Aust. J. Chem., 22, 1341 (1969).
- 6 C. A. Tolman, J. Am. Chem. Soc., 92, 2956 (1970).
- 7 G. R. van Hecke and W. dew Horrocks, *Inorg. Chem.*, 5, 1968 (1966).
- 8 R. Colton and I. B. Tomkins, Aust. J. Chem., 19, 1143 (1966).
- 9 R. Colton and I. B. Tomkins, Aust. J. Chem., 19, 1519 (1966).
- 10 M. W. Anker, R. Colton and I. B. Tomkins, Aust. J. Chem., 20, 9 (1967).
- 11 R. Colton and C. J. Rix, Aust. J. Chem., 22, 305 (1969).
- 12 J. R. Moss and B. L. Shaw, J. Chem. Soc. A, 595 (1970).
- 13 L. Bencze and A. Kraut-Vass, J. Mol. Catal., 28, 369 (1985).
- 14 L. Bencze, A. Kraut-Vass and L. Prókai, J. Chem. Soc., Chem. Commun., 911 (1985).