Short Communication

Synthesis of ortho-palladated complexes of *N*-methylbenzylamine: the first example of ortho-palladation of α -unsubstituted secondary benzylamine

Yoshio Fuchita* and Hajime Tsuchiya Laboratory of Chemistry, College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810 (Japan)

(Received February 1, 1993; revised March 22, 1993)

Cyclopalladation has been receiving much interest in connection with both C-H bond activation and applications for regiochemically controlled organic syntheses [1]. As for cyclopalladation of benzylamine derivatives, Dunina et al. demonstrated in 1984 that ortho-palladation of secondary benzylamines has the limitation that even the substrates having a bulky substituent at the nitrogen atom are impossible to orthopalladate unless they have at least one substituent at the α -position of the benzyl system [2]. However, Dunina et al. used only the tetrachloropalladate ion as the palladium source. We have previously shown that palladium(II) acetate is a much better metallating reagent than tetrachloropalladate [3]. This experience prompted us to investigate the reaction of palladium(II) acetate and N-methylbenzylamine, and we have found that this secondary benzylamine easily ortho-palladates under mild conditions.

Experimental

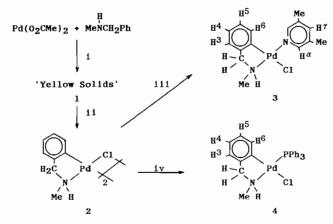
General procedures and apparatus were the same as reported in a previous paper [4].

Preparation of $[Pd_2(\mu-Cl)_2(C_6H_4CH_2NHMe)_2]$ (2)

Palladium(II) acetate (0.200 g, 0.891 mmol) was heated with *N*-methylbenzylamine (0.119 g, 0.980 mmol) at 50 °C in benzene (15 cm³) for 1 day. The resulting greenish-yellow suspension was concentrated and filtered to give pale greenish-yellow microcrystals of 1 (0.226 g). Then, 1 was treated with NaCl (0.208 g, 3.56 mmol) in an acetone-water mixed solvent (10 cm³/3 cm³ = acetone/water) and the resulting reaction mixture was stirred for 1 day at room temperature. The resulting pale yellow microcrystals were filtered and washed with water to yield 2 (0.172 g, 74% yield based on the starting palladium(II) acetate used). *Anal.* Found: C, 36.7; H, 4.0; N, 5.2. Calc. for $C_{16}H_{20}Cl_2N_2Pd_2$: C, 36.7; H, 3.9; N, 5.4%.

Preparation of the mononuclear complexes $[PdCl(C_6H_4CH_2NHMe)L]$ (3: L=3,5-lutidine, 4: $L=PPh_3$)

A solution of 3,5-lutidine or PPh₃ (0.294 mmol) in CH₂Cl₂ (2.5 cm³) was added to a suspension of 2 (0.070 g, 0.134 mmol) in CH₂Cl₂ (7.5 cm³). A clear solution was obtained soon, which was stirred at room temperature for 5 h. The resulting mixture was concentrated and diluted with hexane to give 3 or 4. 3: yield 54%. *Anal.* Found: C, 48.3; H, 5.2; N, 7.4. Calc. for C₁₅H₁₉ClN₂Pd: C, 48.8; H, 5.2; N, 7.6%. 4: yield 90%. *Anal.* Found: C, 53.5; H, 4.6; N, 2.3. Calc. for C₂₆H₂₅ClNPPd·CH₂Cl₂: C, 53.2; H, 4.5; N, 2.4%.


Results and discussion

N-Methylbenzylamine reacted with palladium(II) acetate in benzene to afford pale greenish-yellow microcrystals (1) and the subsequent treatment of 1 with NaCl gave the chloro-bridged dinuclear ortho-palladated complex of *N*-methylbenzylamine, $[Pd_2(\mu Cl)_2(C_6H_4CH_2NHMe)_2]$ (2) in 74% yield. Complex 2 was almost insoluble in common solvents, but was converted to tractable mononuclear ortho-palladated complexes, $[PdCl(C_6H_4CH_2NHMe)L]$ (3: L=3,5-lutidine, 4: L=PPh₃), by the reactions with 3,5-lutidine and PPh₃ (Scheme 1).

The ¹H NMR spectrum of **3** (CDCl₃)** exhibited four *o*-phenylene protons (δ 6.12 (H⁶, d, 1H, ³J(HH) 7.3 Hz), 6.8 (H⁴ and H⁵, m, 2H) and 7.0 (H³, m, 1H)) and two non-equivalent methylene protons as a doublet of doublets, each owing to both the geminal and vicinal couplings (δ 3.77 (1H, ²J(HH) 14.2 Hz, ³J(HH) 3.4 Hz) and 4.54 (1H, ²J(HH) 14.2 Hz, ³J(HH) 5.4 Hz)). Moreover, *N*-methyl protons resonated at δ 2.91 as a doublet (³J(HH) 6.4 Hz) due to the geminal coupling with N–H proton (δ 4.15 br, 1H). These data clearly showed that **3** contains a chelating 2-(*N*-methylaminomethyl)phenyl-C¹,N moiety.

^{*}Author to whom correspondence should be addressed.

^{**3,5-}Lutidine: δ 2.30 (Me, s, 6H), 7.41 (H⁷, s, 1H) and 8.51 (H^a, s, 2H).

Scheme 1. i: Benzene, 50 °C, 1 day; ii: NaCl, acetone-water, r.t., 1 day; iii: 3,5-lutidine, CH_2Cl_2 , r.t., 5 h; iv: PPh₃, CH_2Cl_2 , r.t., 5 h.

As for the ¹H NMR spectrum of 4 (CDCl₃)*, one of the methylene protons was observed at δ 4.79 as a doublet of doublets (²J(HH) 14.2 Hz and ³J(HH) 5.4 Hz), whereas the other proton resonated at δ 3.77 as an octet owing to the couplings with the geminal (²J(HH) 14.2 Hz) and vicinal protons (³J(HH) 4.4 Hz) and the ³¹P nuclei (⁴J(HP) 2.0 Hz). Protons of the *N*-methyl group were also observed accompanying a coupling due to the ³¹P nuclei besides a geminal coupling with the N–H proton at δ 2.89 as a doublet of doublets (⁴J(HP) 2.7 Hz, ³J(HH) 6.1 Hz).

Furthermore, the ${}^{13}C{}^{1}H$ NMR spectrum of 4 exhibited three quaternary carbons at δ 151.18, 150.42 and 131.00. The last signal was assigned to the *ipso*-carbon of PPh₃, whereas the remaining two resonances

were due to C-1 and C-2 of the ortho-palladated Nmethylbenzylamine moiety. These data strongly confirmed that N-methylbenzylamine is ortho-palladated and **4** has a 2-(N-methylaminomethyl)phenyl-C¹,N moiety.

Concerning complex 1, the ¹H NMR spectrum was very complicated and so whether 1 has a normal dimeric structure, $[Pd_2(\mu-O_2CMe)_2(C_6H_4CH_2NHMe)_2]$, or a specific trimeric structure, $[(C_6H_4CH_2NHMe)Pd(\mu-O_2CMe)_2Pd(\mu-O_2CMe)_2Pd(C_6H_4CH_2NHMe)]$, is unknown at the present stage. The latter trimeric complexes have been found in *N*,*N*-dimethylneopentylamine [5], *o*-*N*,*N*-dimethylaminotoluene [6], etc. A structural analysis of 1 is under investigation.

In conclusion, this short communication describes the first successful ortho-palladation of an α -unsubstituted secondary benzylamine, *N*-methylbenzylamine, by palladium(II) acetate. This is in sharp contrast to the results with the tetrachloropalladate ion which only formed the addition product [PdCl₂(PhCH₂NHMe)₂] [2, 7].

References

- 1 A.D. Ryabov, Chem. Rev., 90 (1990) 403; Synthesis, (1985) 133.
- 2 V.V. Dunina, O.A. Zalevskaya and V.M. Potapov, Zh. Obsch. Khim., 54 (1984) 389.
- 3 Y. Fuchita, K. Hiraki, T. Yamaguchi and T. Maruta, J. Chem. Soc., Dalton Trans., (1981) 2405; K. Hiraki, Y. Fuchita and K. Takechi, Inorg. Chem., 20 (1981) 4316.
- 4 Y. Fuchita, H. Oka and M. Okamura, *Inorg. Chim. Acta, 194* (1992) 213.
- 5 Y. Fuchita, K. Hiraki and Y. Matsumoto, J. Organomet. Chem., 280 (1985) C51.
- 6 M. Pfeffer, E. Wehman and G. van Koten, J. Organomet. Chem., 282 (1985) 127.
- 7 A.C. Cope and E.C. Friedrich, J. Am. Chem. Soc., 90 (1968) 909.

^{*}o-Phenylene: δ 6.35 (H⁵ and H⁶, m, 2H), 6.84 (H⁴, dd, 1H, ³J(HH) 7.6 Hz, ⁴J(HH) 1.0 Hz) and 7.04 (H³, br d, 1H, ³J(HH) 7.6 Hz). PPh₃: δ 7.4 (*m* and *p*-H, m, 9H) and 7.7 (*o*-H, m, 6H). NH: δ 4.1 br m.