Short Communication

Characterization of species in ethylaluminum dichloride molten salts by 27Al NMR

Charles E. Keller and W. Robert Carper* *Department of Chemistry, The Wichita State University, Wichita, KS 67260-0051 (USA)*

Bernard J. Piersma

Department of Chemistry, Houghton College, Houghton, NY 14744 (USA)

(Received January 18, 1993; revised March 13, 1993)

Abstract

A **new room temperature melt containing 1-ethyl-3-methylimidazolium chloride (MEICI) and ethylaluminum dichloride** (EtAlCl₂) contains EtAlCl₂ dimers and EtAlCl₃⁻ as determined by ²⁷Al NMR of neat EtAlCl₂ and a saturated LiCl-EtAlCl₂ solution at 60 °C. The ²⁷Al NMR peaks in the **MEICl-Et&Cl, melt at 129 and 102 ppm are assigned to** the dimers (cis and trans) of $E₁ALCl₂$ (129 ppm) and $E₁ALCl₃$ ⁻ **(102 ppm), respectively. Semi-empirical calculations support** the formation of $EtAICI_3$ ⁻ over $EtAICI_2$ dimer formation **from Cl- and EtAlCl,.**

Introduction

Room temperature chloroaluminate melts contain a variety of charged species which have been identified by various spectroscopic techniques [l-11]. Recently, a new chloroaluminate room temperature molten salt system has been studied using Raman spectroscopy [12]. This melt is a mixture of ethylaluminum dichloride $(EtAICI₂)$ and 1-butyl-3-methylimidazolium chloride (BuMICl) and is liquid over a wide range of temperatures and melt compositions. A similar melt system containing 1-ethyl-1-methylimidazolium chloride (MEICl) and $EtAICI₂$ has also been reported [13]. The ²⁷Al NMR of the MEICl-EtAlCl₂ melt, neat EtAlCl₂ and related melts provide evidence of the species found in this new melt [13].

Experimental

Materials

The 1-ethyl-3-methylimidazolium chloride and chloroaluminate molten salts were prepared as previously described [9]. Ethylaluminum dichloride was purified by freeze-thawing under anhydrous helium gas atmosphere in a dry box. All molten salts preparations and manipulations were performed in a dry box. Samples were loaded into 5 mm sample tubes, capped and sealed with parafilm. They were then removed from the dry box and sealed immediately with a torch.

NMR measurements

27Al NMR spectra were recorded on a Varian XL 300 spectrometer at 78.15 MHz. Temperature measurements were calibrated against methanol or ethylene glycol and are accurate to within 0.5 "C. Pulse widths were typically 5-10 μ s, ad longitudinal relaxation times were measured by the inversion-recovery method $(180^\circ - \tau - 90^\circ - T)$ with $T > 10T$, [9]. For all melt samples, at least 12 delay times (τ) were used and relaxation times (in duplicate) obtained from a three parameter exponential fit of magnetization as a function of τ . All ²⁷Al chemical shift (δ) values reported herein are relative to $\text{Al}(\text{H}_2\text{O})_6^{3+}$ [13].

Results and discussion

Spectral results

The ²⁷Al NMR of neat EtAlCl₂ at 60 °C and 78.15 MHz contains a broad peak at 128.5 ppm $(T_1 = 115)$ μ s) and a shoulder at 97 ppm $(T_1 = 147 \mu s)$ which collapses into the broad downfield peak as the temperature is lowered to 30 °C [13]. The ²⁷Al NMR peaks at 128.5 and 97 ppm have been assigned to the dimer and monomer of EtAlCl₂, consistent with the ability of this species to form C_{2h} dimers [13-15]. Similarly, the 27A1 NMR spectrum of a 0.5/0.5 (mole ratio) $MEICI-EtAICI₂$ melt (Fig. 1) contains a broad peak at 129 ppm $(T_1 = 211 \mu s)$ and a sharp peak at 102 ppm $(T_1=99 \text{ ms})$. Attempts to form EtAlCl₃⁻ by adding NaCl to neat EtAlCl₂ failed as NaCl is virtually insoluble in neat EtAlCl₂. LiCl, however, is soluble and induces the dissociation of $EtAICI_2$ dimers to form $EtAICI_3^-$. The 27Al NMR spectrum of a saturated solution of LiCl in EtAlCl₂ produces a single peak at 100.5 ppm $(T_1 = 1.53 \text{ ms})$ as shown in Fig. 1. Assignments of the ²⁷Al peak at 128–129 ppm to the EtAlCl₂ dimer and

^{&#}x27;Author to whom correspondence should be addressed.

Fig. 1. 27 Al NMR spectra (78.15 MHz) of (1) neat EtAlCl₂, (2) $0.5/0.5$ MEICl/EtAlCl₂ and (3) saturated LiCl/EtAlCl₂, all at 60 "C.

the peak at 100–102 ppm to $EtAICI_3^- (C_{3v})$ is consistent with both their coordination and symmetry [13-16].

Comparison of the 27 Al NMR spectra of these melts indicates that the $0.5/0.5$ MEICl-EtAlCl₂ melt contains a mixture of $EtAICI₂$ dimers (broad downfield peak), $EtAICI₃$ and MEI⁺. The ratio of EtAlCl₂ dimer to EtAlCl₃⁻ at 60 °C is 12:1 as indicated by the ratio of the integrated curve areas. The 27 Al NMR spectrum of a 0.4/0.6 mole ratio MEICl-EtAlCI, melt at 60 "C has the same peaks as the $0.5/0.5$ melt, however the ratio decreases to 3:l for the two main peaks (129/ 102 ppm), consistent with the formation of additional EtAlCl₃⁻. A very weak third peak at 95 ppm is also observed in the $0.4/0.6$ melt at 60 °C. This narrow (long T_1) peak at 95 ppm is assigned to the $Et_2Al_2Cl_5^$ species consistent with its likely concentration, coordination and chemical shift $[16, 17]$. This same species has previously been identified by Raman spectroscopy in BuMICl-EtAlCl, melts [12] at mole ratios greater than 1:l.

Model calculations

Semi-empirical calculations using the MOPAC [18] program package predict the general course of the reaction between $EtAICI_2$ and Cl^- (eqn. (1)). Both AM1 $[19]$ and PM3 $[20, 21]$ (in parentheses) methods were used to calculate the heats of formation of each

$$
(\text{EtAlCl}_2)_2 + 2\text{Cl}^- \iff 2\text{EtAlCl}_3 \tag{1}
$$

species. The results were -172.69 (-297.33) kJ for the cis dimer of EtAlCl₂ and -173.12 (-297.91) kJ for the *trans* dimer. The heat of formation of Cl^- is -157.57 (-214.34); EtAlCl₂ is -462.78 (-383.09) and EtAlCl₃⁻ is -918.83 (-934.24) kJ. The heat of reaction

for Cl^- reacting with the dimer of $EtAICI_2$ to form EtAlCl₃⁻ and EtAlCl₂ is -125.79 (-46.04) kJ for the *cis* dimer and -125.37 (-45.49) kJ for the *trans* dimer. The heat of formation of $EtAICI_3^-$ is -298.49 (-336.81) kJ versus -172.69 (-297.33) kJ and -173.12 (-297.91) kJ for the *cis* and *trans* dimer formation, respectively. These results are in agreement with the formation of additional $EtAICl₃$ ⁻ instead of dimer formation and free Cl^- as the mole ratio of Cl^- to $EtAlCl₂$ approaches 1:1.

Acknowledgements

The authors thank Dr J. J. P. Stewart and Dr John S. Wilkes for helpful discussions.

References

- 1 D. J. Hart and W. T. Ford, J. Am. *Chem. Sot.,* 39 (1974) 363.
- 2 V. R. Koch, L. L. Miller and R A. Osteryoung, Z. Am. *Chem. Sot.,* 98 (1976) 5277.
- 3 R. J. Gale, B. Gilbert and R. A. Osteryoung, *Inorg. Chem.* I7 (1978) 2728.
- 4 J. L. Gray and G. E. Maciel, *J. Am. Chem. Soc.*, 103 (1981) 7147.
- 5 J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 21 (1982) 1263.
- 6 K. M. Dieter, C. J. Dymek, N. E. Heimer, J. W. Rovang and J. S. Wilkes, J. *Am. Chem. Sot., I10 (1988) 2722.*
- 7 R. A. Zawodzinski, R. Kirland and R. A. Osteryoung, *J. Phys. Chem., 91 (1987) 962.*
- 8 B. Gilbert, S. D. Williams and G. Mamantov, Znorg *Chem., 27 (1988) 2359.*
- 9 W. R. Carper, J. L. Pflug, A. M. Elias and J. S. Wilkes, J. *Phys. Chem., 96 (1992) 3828.*
- 10 W. R. Carper, J. L. Pflug and J. S. Wilkes, *Inorg. Chim Acru, 193 (1992) 201.*
- 11 W. R. Carper, J. L. Pflug and J. S. Wilkes, *Inorg. Chim Acta, 202 (1992) 89.*
- 12 B. Gilbert, Y. Chauvin and I. Guibard, *vib. Spectrosc., I* (1991) 299.
- 13 W. R. Carper, C. E. Keller, P. A. Shaw, M. Parrish and J. S. Wilkes, in R. J. Gale and G. Blomgren (eds.), *Eight International Symposium on Molten Salts,* Electrochemical Society, New York, USA, 1992, p. 336.
- 14 J. Weidlein, *J. Organomet. Chem., 17 (1969) 213.*
- 15 O. Yamamoto, K. Hayamizu and M. Yanigisawa, *J. Organome*. Chem., 73 (1974) 17.
- 16 J. J. Delpuech, in P. Laszlo (ed.), *NMR of Newly Accessible Nuclei,* Vol. 2, Academic Press, New York, USA, 1983, p. 153.
- 17 J. W. Akitt, in J. Mason (ed.), *Multinuclear NMR,* Plenum, New York, USA, 1987, p. 259.
- 18 J. J. P. Stewart, MOPAC, *QCPE Bull.*, 3 (1983) 43.
- 19 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, *J. Am. Chem. Soc.*, 107 (1985) 3902.
- 20 J. J. P. Stewart, *J. Comput. Chem., 10 (1989) 209.*
- 21 J. J. P. Stewart, *J. Comput. Chem., 10* (1989) 221.