Organopalladium(IV) Chemistry: Binuclear Pd^{IV} - Pd^{IV} and Pd^{IV} - Pt^{IV} μ -Hydrocarbyl Complexes

ALLAN J. CANTY* and ANDREW A. WATSON Chemistry Department, University of Tasmania, Hobart, Tas. 7001, Australia (Received June 13, 1988)

Alkylpalladium(IV) chemistry has developed rapidly [1-7] since the initial synthesis of the 2,2'bipyridyl complex fac-Me₃Pd(bipy)I in 1986 [1], including: reports of kinetic studies of the transoxidative addition of iodomethane to Me₂Pd(bipy) to form fac-Me₃Pd(bipy)I and subsequent reductive elimination of ethane to form cis-MePd(bipy)I [5]; an estimation of the Pd-C bond energy for fac-Me₃Pd-(bipy) [5]; isolation of cationic complexes [2-4], [fac-Me₃Pd{tris(pyrazol-1-yl)methane}]I [2]: e.g. detection of cations for bidentate ligands in solution, e.g. [fac-Me₃Pd(bipy)(NCMe)]⁺ [5]; and detection of complexes at low temperature by NMR spectroscopy [3, 4, 6, 7], e.g. trans-oxidative addition of allyl bromide to form fac-Me₂(CH₂=CH-CH₂)-Pd(bipy)Br [4] and *cis*-oxidative addition of benzyl bromide to form fac-Me₂(PhCH₂)Pd(tetramethylethylenediamine)Br [6].

It has become apparent that, with the appropriate choice of alkyl groups and ligands, alkylpalladium-(IV) complexes of considerable stability in both the solid state and solution are accessible [4]. There is considerable current interest in μ -hydrocarbyl transition metal complexes [8] and, noting that facile *trans*-oxidative addition of benzyl bromide to Me₂Pd-(bipy) gives ambient temperature stable *fac*-Me₂-(PhCH₂)Pd(bipy)Br [4], we have attempted oxidative addition reactions with α, α' -meta-dibromoxylene, resulting in isolation of the first examples of (μ hydrocarbyl)dipalladium(IV) and (μ -hydrocarbyl)palladium(IV)platinum(IV) complexes (Scheme 1).

Reaction of m-(BrCH₂)₂C₆H₄ with Me₂Pd(bipy) in a 4:1 molar ratio (organohalide in excess to minimise formation of 2) in acetone at 0 °C gave a small quantity of a white precipitate, identified as a mixture of 1 and 2, and addition of hexane to the filtrate gave the complex 1 in *ca.* 32% yield. Complex 1 dissolves in CDCl₃ to give a simple ¹H NMR spectrum showing resonances and integration as expected for *trans*-oxidative addition to form *fac*-Me₂(*m*-(CH₂Br)C₆H₄CH₂)Pd(bipy)Br; e.g. benzene ring resonances at 6.77 (1H), 6.62 (1H) and 6.41 (2H) ppm, CH₂Br at 4.13 ppm, and with CH₂Pd and

Scheme 1.

 Me_2Pd at 3.16 and 2.03 ppm, similar to the values reported [4] for the related complex fac-Me₂(Ph-CH₂)Pd(bipy)Br of 3.17 and 1.98 ppm.

The binuclear complexes 2 and 3 were obtained on oxidative addition of the 'organohalide' 1 to Me₂M(bipy) in chloroform/acetone with subsequent addition of hexane; synthesis of the dipalladium complex {Me₂Pd(bipy)Br}₂(μ -m-(CH₂)₂C₆H₄) (2) directly from m-(BrCH₂)₂C₆H₄ and Me₂Pd(bipy) in a 1:2 ratio in acetone is preferred, since this procedure gives a higher yield (ca. 70%), and the synthesis from 1 requires the presence of chloroform to dissolve 1, although Me₂Pd(bipy) is sensitive to chloroform. The binuclear complexes have satisfactory microanalyses (C, H, N) and similar infrared spectra which differ from the spectrum of 1, and although the palladium(IV) complexes slowly decompose at ambient temperature they may be satisfactorily stored at ca. -20 °C.

The binuclear complexes are insufficiently soluble in CDCl₃ or $(CD_3)_2CO$ for ¹H NMR spectroscopy,

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 1. The ¹H NMR spectrum in the upfield region obtained on oxidative addition of $Me_2(m-(CH_2Br)C_6H_4CH_2)Pd(bipy)Br$ (1) to $Me_2Pt(bipy)$ in CDCl₃ at 0 °C, 4 min after mixing and prior to completion of reaction, showing the presence of $Me_2Pd(bipy)$ -Br(μ -m-(CH₂)₂C₆H₄)Me₂Pt(bipy)Br (3) (assignments for 3 in bold type, s indicates ²J(¹H-¹⁹⁵Pt) satellites), together with unreacted 1, $Me_2Pt(bipy)$ and some impurities (*).

but if their syntheses are conducted in NMR tubes, then monitoring of spectra during crystallisation of the complexes clearly reveals resonances of the binuclear complexes. The spectra are readily assigned on comparison with 1, and are consistent with *trans*oxidative addition; e.g. complex 2, formed in CDCl₃, exhibits CH_2Pd and Me_2Pd resonances at 2.60 and 1.79 ppm, respectively, and benzene ring protons as broad resonances at 5.9 (3H) and 5.1 (1H). Complex 3, formed in CDCl₃ (Fig. 1), exhibits CH₂Pd and Me₂Pd resonances at 2.62 and 1.79 ppm, together with CH₂Pt at 2.25 ppm $[{}^{2}J({}^{1}H-{}^{195}Pt)$ 93 Hz], Me₂Pt at 1.36 ppm $[{}^{2}J({}^{1}H-{}^{195}Pt)$ 70 Hz], and benzene ring protons as broad resonances at 5.9 (2H), 5.65 (1H) and 4.9 (1H); the ${}^{2}J({}^{1}H-{}^{195}Pt)$ values are characteristic of Pt^{IV} and are identical to those reported for *fac*-Me₂(PhCH₂)Pt(bipy)Br [9]. In view of the marked upfield shifts of the benzene ring protons on progressing from m-(Br-CH₂)₂C₆H₄ (7.5-7.3 ppm) to 1 (6.8-6.4 ppm) and to 2 and 3 (5.9-4.9 ppm), complexes 1-3 are shown with the central benzene ring adjacent to the 2,2'-bipyridyl groups (Scheme 1).

Thus, the reactivity of $Me_2Pd(bipy)$ toward oxidative addition by organohalides under mild conditions [1, 3-5], involving an S_N^2 mechanism for iodomethane [5], appears to be applicable for the development of an extensive chemistry of palladium(IV), including binuclear $Pd^{IV}-Pd^{IV}$ and $Pd^{IV}-Pt^{IV} \mu$ -hydrocarbyl systems.

Acknowledgements

This work was supported by the University of Tasmania and the Australian Research Council, and by a loan of palladium chloride from Johnson, Matthey and Co. Ltd.

References

- 1 P. K. Byers, A. J. Canty, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1722 (1986).
- 2 P. K. Byers, A. J. Canty, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1093 (1987).
- 3 P. K. Byers, A. J. Canty, B. W. Skelton and A. H. White, J. Organomet. Chem., 336, C55 (1987).
- 4 P. K. Byers and A. J. Canty, J. Chem. Soc., Chem. Commun., (1988), in press.
- 5 P. K. Byers, A. J. Canty, M. Crespo, R. J. Puddephatt and J. D. Scott, Organometallics, 7, 1363 (1988).
- 6 W. de Graaf, J. Boersma, D. Grove, A. L. Spek and G. van Koten, Recl. Trav. Chim. Pays-Bas, 107, 299 (1988).
- 7 M. Catellani and G. P. Chiusoli, J. Organomet. Chem., 346, C27 (1988).
- 8 J. D. Scott, M. Crespo, C. M. Anderson and R. J. Puddephatt, Organometallics, 6, 1772 (1987); J. D. Scott and R. J. Puddephatt, Organometallics, 5, 1538 (1986).
- 9 M. Crespo and R. J. Puddephatt, Organometallics, 7, (1988), in press.