Synthesis and Characterization of $[Pt(COD)Cl(NO_3)]$ and $[Pt(COD)(NO_3)_2]$ and the Use of $[Pt(COD)Cl_x(NO_3)_{2-x}]$ in the Preparation of *cis* $[Pt(PPh_3)_2Cl_x(NO_3)_{2-x}]$ (x = 0, 1, 2) and $[Pt(PPh_3)_3L](NO_3)$ $(L = Cl, NO_3)$

F. DE JONG, J. J. BOUR* and P. P. J. SCHLEBOS

Inorganic Chemistry Department, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

(Received April 21, 1988)

Abstract

[Pt(COD)Cl₂] (COD = 1,5-cyclooctadiene) is a versatile starting material for the synthesis of Pt(II) compounds. The preparations of the new compounds [Pt(COD)Cl(NO₃)], [Pt(COD)(NO₃)₂] and [Pt-(PPh₃)₃(NO₃)](NO₃) and also of the known compounds *cis* [Pt(PPh₃)₂Cl₂], *cis* [Pt(PPh₃)₂Cl(NO₃)], *cis* [Pt(PPh₃)₂Cl(NO₃)₂] and [Pt(PPh₃)₂Cl(NO₃)₂] are reported. The compounds are characterized by elemental analysis, ³¹P{¹H} NMR spectroscopy and IR spectroscopy.

Introduction

Metal compounds with good leaving groups are often used as starting materials for the synthesis of mixed-metal cluster compounds [1]. In the synthesis of mixed Pt-Au cluster compounds [Pt(COD)-(NO₃)₂] may be used as such [2]. In order to enrich the synthetic procedures for these cluster compounds, a number of compounds [Pt(COD)Cl_x-(NO₃)_{2-x}], cis[Pt(PPh₃)₂Cl_x(NO₃)_{2-x}] (x = 0, 1, 2) and [Pt(PPh₃)₃L](NO₃) (L = Cl, NO₃) were prepared and characterized.

Substitution of Pt-bonded Cl by NO₃ or PR₃ by means of AgNO₃ or AgPR₃NO₃ has been reported earlier, especially for R = alkyl. Species such as $[Pt(PR_3)_2X_2]$, $[Pt(PR_3)_3X]^+$ and $[Pt(PR_3)_4]^{2+}$ with R = alkyl [3-6] and with R = aryl [6,7] were prepared in this way. Substitution of COD by phosphines has been applied previously [8, 9].

Experimental

General

 $^{31}P\{^{1}H\}$ NMR spectra were recorded on a Varian XL100 FT at 40.5 MHz, in CH₂Cl₂ solution, with TMP in CH₂Cl₂ as external reference. Infra-red

spectra were recorded on a Perkin-Elmer 283 spectrophotometer, in CsI pellets or in nujol between NaCl crystals. C, H and N analyses were carried out by the microanalytical department of this university.

Preparations

Starting materials

 $[Pt(COD)Cl_2]$ was prepared according to the literature [10]. The COD used hereby was distilled over sodium under nitrogen. The white product was dried for 6 h at room temperature in vacuum. AgPPh₃NO₃ was prepared according to the literature [11]. All other chemicals were commercially available and were used without purification.

[Pt(COD)Cl(NO₃)]

A solution of 23.3 mg AgNO₃ (0.137 mmol) in 15 ml MeOH was added in 30 min to a stirred solution of 51.2 mg [Pt(COD)Cl₂] (0.137 mmol) in 30 ml CH₂Cl₂. A white precipitate of AgCl was formed. The reaction mixture was evaporated to dryness at reduced pressure, at room temperature. AgCl was removed by adding 15 ml of CH₂Cl₂ and filtration. The volume of the filtrate was reduced to 5 ml by evaporation at reduced pressure at room temperature. Colourless needles were obtained by slow diffusion of diethylether in the solution. The product was filtered off, washed with diethylether and dried at room temperature in vacuum. Yield 41 mg (0.102 mmol = 75% based on Pt). Dec. 135-160 °C. Anal. Found (calc.): C, 23.75 (23.98); H, 2.98 (3.02); N, 3.33 (3.50)%. IR, apart from peaks due to COD: (nujol) bonded nitrate: 1520(s), 1510(s), 1270(s), 967(s), 793(w) cm⁻¹; (CsI) ν (Pt-Cl)/ ν (Pt-O): 334(m), 308(m) cm⁻¹.

$[Pt(COD)(NO_3)_2]$

A solution of 250 mg $AgNO_3$ (1.47 mmol) in 50 ml MeOH was added to a stirred solution of 200 mg [Pt(COD)Cl₂] (0.535 mmol) in 50 ml CH₂-Cl₂. A white precipitate of AgCl was formed. The

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

reaction mixture was evaporated to dryness at reduced pressure, at maximal 20 °C. AgCl and AgNO₃ were removed by adding 50 ml CH₂Cl₂ and filtration. The filtrate was diminished to 3 ml by evaporation at reduced pressure, at maximal 20 °C. A white precipitate was formed. After standing for 15 min, the precipitate was filtered off, washed with diethylether and dried at room temperature in vacuum. Yield 207 mg (0.484 mmol = 91% based on Pt). The product decomposes at room temperature within weeks, and at 50 °C within minutes, but is stable at 0 °C. The product does not explode when struck by a hammer and burns without exploding when ignited [2]. Anal. Found (calc.): C, 22.57 (22.49); H, 2.84 (2.83); N, 6.46 (6.56)%. IR (nujol) bonded nitrate: 1524(s), 1278(s), 972(s), 791(w) cm⁻¹; (CsI) v(Pt-O): 310(m) cm⁻¹

 $[Pt(COD)(NO_3)_2]$ may be prepared from $[Pt(COD)Cl(NO_3)]$ in the same way (see Scheme 1).

$cis[Pt(PPh_3)_2Cl_2]$

A solution of 105 mg PPh₃ (0.400 mmol) in 2 ml CH_2Cl_2 was added to a stirred solution of 50 mg $[Pt(COD)Cl_2]$ (0.134 mmol) in 5 ml CH_2Cl_2 . The white product was obtained by slow diffusion of diethylether in the CH_2Cl_2 solution. The product was filtered off, washed with diethylether and dried in vacuum at 70 °C. Yield 92 mg (116 mmol = 87% based on Pt). Melting point (m.p.) 298-302 °C (melting and decomposition). IR, apart from peaks

TABLE I. ${}^{31}P{}^{1}H$ NMR Data Relative to TMP

Compound	δ (ppm)	¹ J(¹⁹⁵ Pt ³¹ P) (Hz)	² <i>J</i> (³¹ P ³¹ P) (Hz)
cis[Pt(PPh ₃) ₂ Cl ₂]	11.7	367 9	
$cis[Pt(PPh_3)_2(NO_3)_2]$	1.0	4012	
cis[Pt(PPh ₃) ₂ Cl(NO ₃)]	14.4 ^a	3849 ⁿ	19.0
	-0.3 ^b	3863 ^b	
[Pt(PPh ₃) ₃ Cl](NO ₃)	9.9ª	3645 ^a	18.7
	20.7	2486	
$[Pt(PPh_3)_3(NO_3)](NO_3)$	0.2 ^b	3726 ^b	19.5
L	19.5	2612	

^aP trans to Cl. ^bP trans to NO₃.

due to triphenylphosphine: (CsI) ν (Pt-Cl): 317(m), 290(m) cm⁻¹, in accordance with the literature [12]. The ³¹P{¹H} NMR spectrum of the product, a singlet with ¹J(¹⁹⁵Pt³¹P) satellites (Table I) is identical to the spectrum of *cis*[Pt(PPh₃)₂Cl₂] which was prepared according to the literature [13]. A solution of *cis*[Pt(PPh₃)₂Cl₂] was prepared before in almost the same way [9].

cis[Pt(PPh₃)₂Cl(NO₃)]

(a) From $[Pt(COD)Cl(NO_3)]$: in the same way as the preparation of $cis[Pt(PPh_3)_2Cl_2]$ from $[Pt(COD)Cl_2]$, with 2.00 equiv. PPh₃, which are added in 30 min.

(b) From $cis[Pt(PPh_3)_2Cl_2]$: in the same way as the preparation of $[Pt(COD)Cl(NO_3)]$ from $[Pt-(COD)Cl_2]$.

(c) From $cis[Pt(PPh_3)_2Cl_2]$ and $cis[Pt(PPh_3)_2 (NO_3)_2$: 25.0 mg of $cis[Pt(PPh_3)_2Cl_2]$ (0.032) mmol) and 26.7 mg of $cis[Pt(PPh_3)_2(NO_3)_2]$ (0.032) mmol) were dissolved in 5 ml CH₂Cl₂. The solution was stirred for 1 h and allowed to stand for one night. Colourless crystals were obtained by slow diffusion of diethylether into the solution. The product was filtered off, washed with diethylether and dried at room temperature in vacuum. Yield 35 mg (0.043 mmol = 68% based on Pt). m.p. 218-226 °C (melting with decomposition). Anal. Found (calc.): C, 52.15 (52.92); H, 3.70 (3.70); N, 1.61 (1.71)%. IR (nujol) bonded nitrate: 1490(s), 1480(s), 1270(s), 990(s), 795(w) cm⁻¹; (Csl) ν (Pt-Cl)/ ν (Pt-O): 308(m), 288(m) cm⁻¹. These data are in close accordance with the literature [14]. The ${}^{31}P{}^{1}H$ NMR spectrum consists of two doublets, intensity 1:1, both with ¹J(¹⁹⁵Pt³¹P) satellites (Table I). The cis [Pt(PPh₃)₂Cl(NO₃)] disproportionates in CH₂Cl₂ slightly, according to 2 cis [Pt(PPh₃)₂Cl- $(NO_3)] \neq cis[Pt(PPh_3)_2Cl_2] + cis[Pt(PPh_3)_2(NO_3)_2].$ The disproportionation constant was calculated from $^{31}P{^{1}H} NMR$ data (see Table II).

$cis[Pt(PPh_3)_2(NO_3)_2]$

(a) From $[Pt(COD)(NO_3)_2]$: in the same way as the preparation of $cis[Pt(PPh_3)_2Cl(NO_3)]$ from $[Pt(COD)Cl(NO_3)]$. Yield 55% based on Pt.

Scheme 1.

TABLE II. Determination of the Disproportionation Constant of cis[Pt(PPh₃)₂Cl(NO₃)] in CH₂Cl₂ Calculated from the Peak Heights in the ³¹P{¹H}NMR Spectra^a

Sample	h1	h2	h ₃	$K_{\text{disp}} (\times 10^{-3})$ = $(h_1 - h_2)/h_3^2$
1	54	17	473	4.9
2	56	25	495	5.9
3	46	24	452	5.4
4	51	17	380	6.0
5	27	44	492	4.9
				Average: $(5.4 \pm 1)10^{-3}$

 ${}^{a}h_{1}$ = height of the central peak of $cis[Pt(PPh_{3})_{2}Cl_{2}]$; h_{2} = height of the central peak of $cis[Pt(PPh_{3})_{2}(NO_{3})_{2}]$; h_{3} = sum of the heights of the four central peaks of $cis[Pt(PPh_{3})_{2}-Cl(NO_{3})]$. All peak heights are in relative units.

(b) From $cis[Pt(PPh_3)_2Cl_2]$ or $cis[Pt(PPh_3)_2Cl_1(NO_3)]$: in the same way as the preparation of $[Pt(COD)(NO_3)_2]$ from $[Pt(COD)Cl_2]$ or $[Pt(COD)-Cl(NO_3)]$. Colourless crystals were obtained by slow diffusion of diethylether in the CH_2Cl_2 solution in the dark. Yield 83% based on Pt.

(c) From [Pt(COD)Cl₂]: a solution of 60.1 mg AgPPh₃NO₃ (0.139 mmol) in 10 ml CH₂Cl₂ was added to a stirred solution of 26.0 mg [Pt(COD)-Cl₂] (0.0695 mmol) in 5 ml CH₂Cl₂. After stirring for 1 h and standing for 4 h the slowly precipitated AgCl was filtered off. The volume of the filtrate was reduced to 3 ml by evaporation at reduced pressure. Colourless crystals were obtained by slow diffusion of diethylether into the CH₂Cl₂ solution in the dark. The product was filtered off, washed with diethylether and dried at 70 $^{\circ}$ C in vacuum. Yield 49 mg (0.058 mmol = 84% based on Pt). m.p. 217-220 °C (melting and decomposition). Anal. Found (calc.): C, 51.34 (51.25); H, 3.57 (3.58); N, 3.26 (3.32)%. IR (nujol) bonded nitrate: 1504(s), 1497(s), 1282(s), 1263(s), 980(s), 792(w) cm^{-1} (CsI) ν (Pt-O): 308(m), 290(m) cm⁻¹. These data are in close accordance with the literature [15-18]. The ${}^{31}P{}^{1}H$ NMR spectrum consists of a singlet with two ${}^{1}J({}^{195}\text{Pt}{}^{31}\text{P})$ satellites (Table I).

$[Pt(PPh_3)_3Cl](NO_3)$

(a) From cis [Pt(PPh₃)₂Cl(NO₃)]: 35 mg of this (0.043 mmol) and 22 mg PPh₃ (0.084 mmol) were dissolved in 5 ml CH₂Cl₂. Slow diffusion of diethylether into the solution yielded colourless crystals. Yield 34 mg (0.031 mmol = 74% based on Pt).

(b) From cis [Pt(PPh₃)₂Cl₂]: a solution of 111.8 mg AgPPh₃NO₃ (0.259 mmol) in 30 ml CH₂Cl₂ was added in 45 min to a stirred solution of 204.5 mg cis [Pt(PPh₃)₂Cl₂] (0.259 mmol) in 30 ml CH₂Cl₂. After standing for one night the very slowly precip-

itated AgCl was filtered off. The volume of the filtrate was reduced to 3 ml by evaporation at reduced pressure. After standing for 2 h some AgCl was filtered off again. 14 mg PPh₃ (0.053 mmol) was added to the filtrate. Colourless crystals were formed by slow diffusion of diethylether into the solution. The product was recrystallized by slow diffusion of diethylether into a solution of the product in CH₂Cl₂. The product was filtered off, washed with diethylether and dried at 70 °C in vacuum. Yield: 112 mg (0.104 mmol = 40% based on Pt). m.p. 207-208 °C (decomposition at 210 °C). Anal. Found (calc.): C, 59.74 (60.09); H, 4.20 (4.20); N, 1.34 (1.30)%. IR (CsI) free nitrate: 1350(s), 830(w) cm⁻¹; ν (Pt-Cl): 315(m) cm⁻¹. The ${}^{31}P{}^{1}H$ NMR spectrum consists of a doublet and a triplet, intensity 2:1, both with ¹J(¹⁹⁵Pt³¹P) satellites (Table I). It is identical to the spectrum of $[Pt(PPh_3)_3Cl](BF_4)$ [19].

$[Pt(PPh_3)_3(NO_3)](NO_3)$

(a) From $cis[Pt(PPh_3)_2(NO_3)_2]$: in the same way as the preparation of $[Pt(PPh_3)_3Cl](NO_3)$ from $cis[Pt(PPh_3)_2Cl(NO_3)]$. The white product was dried at 70 °C in vacuum. Yield 80% based on Pt. m.p. 176–185 °C (melting and decomposition). Anal. Found (calc.): C, 58.55 (58.65); H, 4.10 (4.10); N, 2.34 (2.53)%. IR (nujol) bonded nitrate: 1514(s), 1268(s), 967(s), 784(w) cm⁻¹; free nitrate: 1355(s), 830(w) cm⁻¹; (CsI) $\nu(Pt-O)$: 293(w) cm⁻¹. The ³¹P{¹H} NMR spectrum consists of a doublet and a triplet, intensity 2:1, both with ¹J-(¹⁹⁵Pt³¹P) satellites (Table I).

(b) Reaction of cis[Pt(PPh₃)₂Cl(NO₃)] with 1.0 equiv. of AgPPh₃NO₃, in CH₂Cl₂, yielded a mixture of [Pt(PPh₃)₃(NO₃)](NO₃) and cis[Pt(PPh₃)₂-(NO₃)₂], molar ratio approximately 1:2.

(c) Reaction of $[Pt(PPh_3)_3Cl](NO_3)$ in CH_2Cl_2 with 1.0 equiv. of AgNO₃ in MeOH yielded after one day *cis* $[Pt(PPh_3)_2Cl(NO_3)]$. After two days a mixture of $[Pt(PPh_3)_3(NO_3)](NO_3)$ and *cis* $[Pt-(PPh_3)_2(NO_3)_2]$ was formed. With 2.0 equiv. of AgNO₃ only *cis* $[Pt(PPh_3)_2(NO_3)_2]$ was formed.

Unsuccessful attempts to prepare $[Pt(PPh_3)_4]$ - $(NO_3)_2$

Between $[Pt(PPh_3)_3(NO_3)](NO_3)$ and excess of PPh₃ in CH₂Cl₂, or boiling MeOH under N₂, no reaction occurred. From $[Pt(PPh_3)_3Cl](NO_3)$ and 1.0 equiv. of AgPPh₃NO₃ in CH₂Cl₂ some *cis* [Pt-(PPh₃)₂Cl(NO₃)] was formed slowly.

Results and Discussion

The substitution of COD by two phosphines to yield *cis* bisphosphino Pt compounds is a fast and rather clean reaction. The *cis* configuration is retained. With only one equivalent of PPh_3 , these reactions were incomplete.

The ³¹P{¹H} NMR spectra of [Pt(PPh₃)₂Cl(NO₃)] and $[Pt(PPh_3)_2(NO_3)_2]$ show that they are the *cis* compounds. The ³¹P{¹H} NMR spectrum of [Pt- $(PPh_3)_2Cl(NO_3)$] contains two doublets, with different ${}^{1}J({}^{195}Pt{}^{31}P)$ coupling, indicating that this compound contains two chemically non-equivalent phosphorus atoms. The magnitude of the ${}^{2}J({}^{3}P{}^{3}P)$ coupling (19.0 Hz) lies in the region of compounds containing phosphines cis to each other [20] just as the ²J(³¹P³¹P) coupling constants of [Pt(PPh₃)₃Cl]⁺ (18.7 Hz) and [Pt(PPh₃)₃(NO₃)]⁺ (19.5 Hz). Both ¹J(¹⁹⁵Pt³¹P) coupling constants of [Pt(PPh₃)₂Cl- (NO_3)] (3849 and 3863 Hz) lie in the region of cis bisphosphino platinum complexes [20b]. The chemical shift of [Pt(PPh₃)₂(NO₃)₂] (1.0 ppm) lies in the same region as the chemical shift of P trans to NO₃ in $[Pt(PPh_3)_3(NO_3)]^+$ (-0.2 ppm). The chemical shifts of P *trans* to P in $[Pt(PPh_3)_3Cl]^+$ (20.7 ppm) and $[Pt(PPh_3)_3(NO_3)]^+$ (19.5 ppm) lie at much higher field, in accordance with the literature [20c]. The ¹J(¹⁹⁵Pt³¹P) coupling constant in [Pt- $(PPh_3)_2(NO_3)_2$ (4012 Hz) lies in the region of the cis bisphosphino platinum complexes [20b].

The chemical shift of phosphorus strongly depends on the ligand trans to the phosphine (Table I). The order $NO_3 > Cl > PPh_3$ holds, in accordance with the literature [20c]. The influence of the trans ligand can also be observed in the ${}^{1}J({}^{195}Pt^{31}P)$ coupling constants. In [Pt(PPh₃)₃X]⁺ and cis [Pt(PPh₃)₂- X_2 the coupling constant of Pt with P trans to X is smaller for X = Cl (3645 versus 3679 Hz) than for $X = NO_3$ (3726 versus 4012 Hz). Also, in cis- $[Pt(PPh_3)_2Cl(NO_3)]$ the coupling constant of Pt with P trans to Cl (3849 Hz) is smaller than the coupling constant of Pt with P trans to NO₃ (3863 Hz). The coupling constant of Pt with P trans to P in $[Pt(PPh_3)_3X]^+$ is much smaller (2486 Hz for X = Cl and 2612 Hz for $X = NO_3$), and lies in the region of the trans bisphosphino platinum complexes [20b]. When bond strength is decreased, the coupling constant decreases. So the order $PPh_3 > Cl >$ NO₃ holds for the trans influence, in accordance with the literature [20d].

Obviously AgPPh₃NO₃ is not a very good phosphine donor, as more $cis[Pt(PPh_3)_2(NO_3)_2]$ than $[Pt(PPh_3)_3(NO_3)](NO_3)$ is formed in the reaction of $cis[Pt(PPh_3)_2Cl(NO_3)]$ with AgPPh₃NO₃. AgNO₃ can abstract PPh₃ from $[Pt(PPh_3)_3Cl]^+$, forming $cis[Pt(PPh_3)_2Cl(NO_3)]$. This is in contrast with trialkylphosphines where, from $[Pt(PR_3)_3Cl]^+$ and AgNO₃, $[Pt(PR_3)_3(NO_3)]^+$ is actually formed [3, 4]. AgNO₃ also abstracts PPh₃ from $[Pt(PPh_3)_2(NO_3)_2]$. The cis compounds are formed during the phosphine abstractions because the X in $[Pt(PPh_3)_3X]^+$ (X = Cl, NO₃) effects a weaker *trans* influence than does PPh₃.

We were unsuccessful in preparing $[Pt(PPh_3)_4]$ -(NO₃)₂, in contrast with the literature [4], where $[Pt(PR_3)_4](NO_3)_2$ is reported, however, only for R = alkyl.

The reactions of $[Pt(COD)Cl_2]$ with AgNO₃, PPh₃ or AgPPh₃NO₃ form a quick synthesis pathway for the new compounds $[Pt(COD)Cl(NO_3)]$, [Pt- $(COD)(NO_3)_2]$ and $[Pt(PPh_3)_3(NO_3)](NO_3)$. [Pt- $(COD)Cl(NO_3)]$ and $[Pt(COD)(NO_3)_2]$ can be prepared in one step starting from $[Pt(COD)Cl_2]$. $[Pt(PPh_3)_3(NO_3)](NO_3)$ can be prepared in two steps, via *cis* $[Pt(PPh_3)_2(NO_3)_2$ (see Scheme 1). (The preparation of $[Pt(PPh_3)_3(NO_3)](NO_3)$ directly from $[Pt(COD)(NO_3)_2]$ with excess PPh₃ is not recommended; the product will be contaminated with an unidentified compound containing COD.)

The known compounds cis [Pt(PPh_3)₂Cl₂], cis-[Pt(PPh_3)₂Cl(NO₃)], cis [Pt(PPh_3)₂(NO₃)₂] and [Pt(PPh_3)₃Cl]⁺ can also be prepared in a simple way from [Pt(COD)Cl₂]: cis [Pt(PPh_3)₂Cl₂] and cis [Pt-(PPh_3)₂(NO₃)₂] in one step; [Pt(PPh_3)₃Cl](NO₃) in two steps, via cis [Pt(PPh_3)₂Cl₂]; and cis [Pt-(PPh_3)₂Cl(NO₃)] in two steps via cis [Pt(PPh_3)₂Cl₂] or [Pt(COD)Cl(NO₃)] (see Scheme 1).

Acknowledgements

This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organisation for the Advancement of Pure Research.

References

- 1 P. D. Boyle, B. J. Johnson, B. D. Alexander, J. A. Casalnuovo, P. R. Gannon, S. M. Johnson, E. A. Larka, A. M. Mueting and L. H. Pignolet, *Inorg. Chem.*, 24, 233 (1985).
- 2 J. J. Bour, R. P. F. Kanters, P. P. J. Schlebos and J. J. Steggerda, Recl. Trav. Chim. Pays-Bas, 107, 211 (1988).
- 3 G. G. Mather, G. J. N. Rapsey and A. Pidcock, *Inorg. Nucl. Chem. Lett.*, 9, 567 (1973).
- 4 D. A. Duddell, P. L. Goggin, R. J. Goodfellow and M. G. Norton, *Chem. Commun.*, 879 (1968).
- 5 D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton and J. G. Smith, J. Chem. Soc. A, 545 (1970).
- 6 R. Favez, R. Roulet, A. A. Pinkerton and D. Schwarzenbach, *Inorg. Chem.*, 19, 1356 (1980).
- 7 K. A. Khokryakov, E. I. Grigorov, N. S. Pamina, V. N. Yakovlev and Yu. N. Kukushkin, *Koord. Khim.*, 13, 237 (1987).
- 8 M. P. Brown, R. J. Puddephatt, M. Rashidi and K. R. Seddon, J. Chem. Soc., Dalton Trans., 951 (1977).
- 9 I. M. Al-Najjar, *Inorg. Chim. Acta, 128,* 93 (1987). 10 J. X. McDermott, J. F. White and G. M. Whitesides, *J.*
- Am. Chem. Soc., 98, 6521 (1976). 11 R. A. Klein and C. Knobler, Inorg. Chem., 16, 242
- (1977).
- 12 D. M. Adams and P. J. Chandler, J. Chem. Soc. A, 588 (1969).

- 13 L. Malatesta and C. Cariello, J. Chem. Soc., 2323 (1958).
- 14 W. J. Cherwinsky and H. C. Clark, Inorg. Chem., 10, 2263 (1971).
- 15 J. A. Kaduk and J. A. Ibers, Inorg. Chem., 16, 3278 (1977).
- 16 F. Cariati, R. Mason, G. B. Robertson and R. Ugo, Chem. Commun., 408 (1977).
- 17 C. D. Cook and J. S. Jauhal, J. Am. Chem. Soc., 89, 3066 (1967).
- 18 M. Kubota, C. A. Koerntgen and G. W. McDonald, Inorg. Chim. Acta, 30, 119 (1978).
- P. S. Pregosin, R. Favez, R. Roulet, T. Boschi, R. A. Michelin and R. Ros, *Inorg. Chim. Acta, 32*, L7 (1980).
- 20 P. S. Pregosin and R. W. Kunz, in P. Diehl, E. Fluck and R. Kosfeld (eds.), 'NMR, Basic Principles and Progress', Vol. 16, Springer, New York, 1979, (a) p. 46, 121; (b) p. 43, 94; (c) p. 52, 53; (d) p. 26.