Synthesis, characterization and molecular structure of tetrakis(2,6 diethylphenylisocyanide)bis(perchIorato)cobalt(II). An example of dissimilarity between perchlorate and tetrafluoroborate salts

Clifford A. L. Becker*

Department of Chembhy, University of Bahrain, P.O. Box 32038, Bahrain (Arabian Gulfl

and **John C. Cooper⁺**

Chemisty Divkion, Naval Research Laboratory, Washington, DC 20375-5000 (U.S.A.)

(Received September 10, 1990)

Abstract

Reaction of 2,6-Et₂C₆H₃NC in 5:1 mole ratio with Co(II) produces Co(CNR)₃X₂ · H₂O, R = 2,6-Et₂C₆H₃; $X=ClO_4$, BF₄; but the perchlorate salt spontaneously decomposes in solid state to Co(CNR)₄(ClO₄)₂. The species $Co(CNR)_{4}(ClO_{4})_{2}$ was determined by X-ray crystallography to contain equivalent, monodentate, trans-coordinated perchlorate ions with average $Co-O$ bond length 2.266(7) \AA , and inequivalent provaaride ligands with average Co-C bond lengths 1.896(13) and 1.887(11) \AA in approximately square planar coordination (C-Co-C bond angles $87.8(4)$ and $92.2(4)$ °, i.e. trans-[Co(CNR)₄(ClO₄)₂]. Inequivalency of the arylisocyanides is achieved primarily through different tilt of the phenyl rings relative to the $CoC₄$ plane and location of the perchlorates directly above or below one pair of CNR. The complex crystallizes in triclinic space group *P*l with $a = 11.550(3)$, $b = 13.464(4)$, $c = 15.684(3)$ Å, α = 77.39(2), β = 68.43(2), γ = 86.17(3)°. Final discrepancy values of R = 0.0726 (R_w = 0.0573) were obtained from 3723 unique, observed reflections. Solid state physical properties (IR, diffuse reflectance and magnetic susceptibility) are compared for $[Co(CNR)_4(CIO_4)_2]$ and $[Co(CNR)_5](BF_4)_2 \cdot H_2O$. Previously eported $[Co(CNCH,Me,-2,6),]$ $(CIO,$ should now be formulated as *trans-*[$Co(CNC,H,Me,2)$] 2.6) 4 (CIO) \cdot], but the tetrafluoroborate ions in both Co(CNC,H,Et,-2,6) \cdot (BF.), \cdot H,O and $Co(CNC₆H₃Me₂-2,6)₅(BF₄)₂ \cdot 0.5H₂O$ are probably ionic.

Introduction

Possible $ClO₄$ coordination was recognized in $[Co(CNC₆H₃Me₂-2,6)₄](ClO₄)₂$, which was prepared from $[Co(CNC_6H_3Me_2-2,6)_5]$ $(ClO_4)_2 \cdot 0.5H_2O$, but the analogous $[Co(CNC₆H₃Me₂·2,6)₄](BF₄)₂$ could not be observed under similar reaction conditions [l]. Assumed $[Co(CNC₆H₃Et₂-2,6)₅](ClO₄)₂·xH₂O$ has been used in ligand substitution/reduction reactions to prepare mono- and disubstituted pentakis(arylisocyanide)cobalt(I) complexes, $[Co(CNR)_4L]ClO_4$, $L = P(C_2H_4CN)_3$, $P(NEt_2)_3$, $[2]$; $[Co(CNR)_{3}L_{2}]ClO_{4}$, $L = PPh_{3}$, $P(C_{6}H_{4}Cl-p)_{3}$, P(C_6H_4OMe-p)₃, P($C_6H_{13}-n$)₃ [2-5]; but it is now recognized that this starting material must have been $[Co(CNC₆H₃Et₂-2,6)₄(ClO₄)₂]$. This paper describes reaction of 2,6-Et₂C₆H₃NC with both CoX₂.6H₂O, $X = CIO₄$, BF₄, and compares the substantially different products.

Perchlorate ion coordination to transition metal cations has been well established by X-ray crystallography since the 1960s [6-8], but is still relatively rare. Usually $ClO₄$ coordination takes place when less than six good ligands are available to the coordination sphere. Given the formula $Co(CNR)_{4}(ClO_{4})_{2}$, perchlorate coordination is not surprising, but starting from $Co(CNR)_{5}(ClO₄)_{2} \cdot H_{2}O$ it would seem unexpected that $ClO₄$ should compete favorably with CNR and spontaneously become a coordinated ion.

Experimental

RNHCHO, $R = 2.6$ -Et₂C₆H₃ hereafter, was prepared from commercial $RNH₂$ (Aldrich) and formic acid [9]. Commercial $Co(CIO₄)₂·6H₂O$ and $Co(BF₄)₂·6H₂O$ (Strem) were used without recrystallization. Anhydrous diethyl ether was filtered through an alumina column immediately before use.

^{*}Author to whom correspondence should be addressed. +Deceased December 1990.

Infrared spectra were recorded on a Perkin-Elmer 1710 and Mattson Polaris FT-IR in nujol mull. Electronic spectra were obtained as diffuse reflectance using a Cary model 2390 spectrophotometer. Powdered samples were mounted behind a quartz plate and measured relative to $BaSO₄$. Melting ranges were measured in capillaries using an Electrothermal melting point apparatus. Magnetic susceptibilities were measured at ambient temperature using a JMC (Johnson Matthey Chemicals) magnetic susceptibility balance. Effective magnetic moments were calculated assuming Curie's law behavior; diamagnetic corrections were literature values [10] or were measured. The C, H, N and Cl elemental analyses were obtained from commercial sources; Co was analyzed by atomic absorption using a Baird Alpha 4 AA spectrophotometer. Samples were dissolved in 3 M nitric acid and digested several days before analysis.

Preparation of $[Co(CNC₆H₃Et₂-2,6)$ *₅* $[(BF₄)₂·H₂O$

RNC was prepared from 2,6-diethylphenylformamide and p-toluenesulfonyl chloride in triethylamine by modification [11] of the synthesis by Hertler and Corey [12], and purified by vacuum distillation. 2.6 -Et₂C₆H₃NC is a colorless liquid after distillation but rapidly becomes yellow; $\nu(-N=C)$, 2117vs, 2081w cm⁻¹ (neat); $X_g = -615 \pm 18 \times 10^{-9}$ (cgs), $X_M = -97.9 \pm 2.9 \times 10^{-6}$. A solution of 6.70 g $Co(BF_4)_2 \cdot 6H_2O$ dissolved in 20.0 ml EtOH was filtered through cotton, chilled in ice, and stirred while 15.67 g RNC (neat, 5:l mole ratio) was added slowly dropwise. The Co(I1) solution became a mixture of viscous green oil and dark blue (azure) crystals; scratching the walls of the reaction flask induced the remaining oil to crystallize. The reaction mixture was filtered cold, separating dark blue microcrystals from yellow-green filtrate. The product was washed with two 5 ml portions of cold EtOH, becoming dark blue when thoroughly dry. Yield: 13.01 g (63%). Melting range: 99-107 °C (decomposition). IR: ν (O-H), 3455m, ~3505w, br(sh) cm⁻¹ (nujol); $\nu(-N=C)$, 2201vs, 2155m, 2106wcm⁻¹ (nujol). Diffuse reflectance electronic spectrum: ~ 640 br (A = 1.27, relative to BaSO₄ standard), \sim 355br (1.30), \sim 315sh (1.24) , 285 (1.22) , 255 (1.21) , 236 (1.19) nm. $\mu_{\text{eff}}=1.95\pm0.02$ BM $(X_e=958\pm28\times10^{-9})$. *Anal.* Calc. for $CoC_{55}H_{67}B_2F_8N_5O$: C, 63.11; H, 6.45; N, 6.69; Co, 5.63. Found: C, 63.35; H, 6.47; N, 6.50; co, 5.3%.

Analogous reaction of RNC (neat, 5:l mole ratio) with $Co(CIO₄)₂·6H₂O$: dark blue (azure) microcrystals; 60% yield; $\nu(-N=C)$, 2198vs, 2153m, 2101w cm^{-1} (nujol). Product was dry and relatively odorfree when initially prepared, but yellow spots were observed shortly after desiccation. Within several TABLE 1. Summary of X-ray diffraction data

days the entire sample became pale yellow. This compound also decomposes stored outside a desiccator, and was not satisfactorily characterized. $[Co(CNR)_{5}](BF_{4})_{2} \cdot H_{2}O$ can be stored indefinitely without apparent decomposition.

Recrystallization of $[Co(CNC₆H₃Et₂ - 2, 6)$ *₄* $[CO₄)₂$

A 3.00 g sample of $[Co(CNR)_5]$ $(ClO_4)_2 \cdot xH_2O$ was dissolved in 5.5 ml CH_2Cl_2 and filtered through cotton, with 1.0 ml $CH₂Cl₂$ rinse. Diethyl ether was added dropwise to this initially dark green solution. Formation of crystals was observed after addition of 4.5 ml ether. A total volume of 10.0 ml ether was added and the mixture chilled 30 min before pale orange crystals were filtered from the yellow-brown solution. The crystals were washed with 4.5 ml ether and dried thoroughly before collection. Yield: 1.94 g (83%). Addition of 17.0 ml ether to the filtrate caused precipitation of a second crop of flesh-colored crystals; total yield: 2.10 g (90%). Recrystallization of samples which were mixtures of yellow and blue solid was analogous; all batches produced 85-90% total yield (based on $[Co(CNR)_5](ClO_4)_2 \cdot H_2O$ con-

version to $[Co(CNR)_4](ClO_4)_2)$. Melting range: 224-231 °C (decomposition). IR: v (O-H), absent; $\nu(-N\equiv C)$, 2202vs, 2170w(sh) cm⁻¹ (nujol). Electronic spectrum: ~ 876 br (A = 0.994), 461 (0.942), ~ 349 br (1.55) , ≈ 307 sh (1.48) , ~ 281 sh (1.53) , 271 (1.57) , ~227 (1.39) nm. $\mu_{\text{eff}} = 1.83 \pm 0.02$ BM ($X_g =$ $1057 \pm 33 \times 10^{-9}$). Anal. Calc. for CoC₄₄H₅₂Cl₂-N408: C, 59.06; H, 5.86; N, 6.26; Cl, 7.92; Co, 6.59. Found: C, 59.33; H, 5.95; N, 6.21; Cl, 8.00; Co, 6.3%.

X-ray data and structure determination

Pertinent collection parameters are listed in Table 1. The single crystal was mounted on a glass rod and placed in a low temperature $N_2(g)$ stream for data collection. The structure was solved by direct methods to locate the Co, C, N, Cl and O atoms. Refinement was by full-matrix least-squares. The function minimized was $\Sigma w (|F_{o}| - |F_{c}|)^{2}$ where $w^{-1} = \sigma^2 |F_o| + 0.0002(F_o)^2$. Positions and anisotropic thermal parameters were refined for all non-hydrogen atoms. Hydrogens were included by using a riding model in which the coordinate shifts of the covalently bonded atoms were also applied to the hydrogens (C-H distances held at 0.96 Å), and they were given an overall isotropic parameter of $U = 0.06 \text{ Å}^2$. Programs used were part of the Micro VAX II version of the SHELXTL PLUS System [13].

Results and discussion

Molecular structure and atomic numbering scheme for the two inequivalent molecules in the unit cell of $[Co(CNC_6H_3Et_2-2,6)_4(CIO_4)_2]$ are illustrated in Figs. 1 and 2. Atomic coordinates and equivalent

Fig. 1. Thermal ellipsoid plot of $[Co(CNC₆H₃Et₂ 2,6$ ₄(ClO₄)₂] drawn at the 20% probability level, showing one molecule of the two inequivalent molecules per unit cell. Hydrogen atoms omitted for clarity. Perspective in arbitrary orientation.

Fig. 2. Thermal ellipsoid plot of $[Co(CNC₆H₃Et₂ 2,6$ ⁴(ClO₄)₂] drawn at the 20% probability level, showing the second molecule of the two inequivalent molecules per unit cell.

isotropic displacement coefficients are presented in Table 2, with bond lengths and angles listed in Tables 3 and 4, respectively. Comparison of solid-state physical properties for $[Co(CNR)_{4}(ClO_{4})_{2}]$ and $[Co(CNR)_{5}] (BF_{4})_{2} \cdot H_{2}O$ include $\nu(-N=0)$ in Fig. 3, diffuse reflectance electronic spectra in Fig. 4, and $\nu(CIO₄), \nu(BF₄)$ IR in Fig. 5.

X-ray structure results

Two molecules are present in the unit cell (i.e. $Z = 2$), but there are two crystallographically unique half-molecules in the asymmetric unit, thereby resulting in two distinct (inequivalent) molecules being in the unit cell. Differences between these two molecules are not particularly major, but are sufficient to require consideration of both molecules in all discussions. Thus two sets of data are always presented. Both Co atoms are located on inversion centers, and are co-planar with the four coordinated C atoms, i.e. $CoC₄$ is planar. One pair of equivalent phenyl rings from each molecule, $C_{2a}-C_{7a}$ (Fig. 1) $(C_{2c}-C_{7c}$ (Fig. 2)), are almost co-planar with CoC₄, having dihedral angles of 1.6 (7.8"), while the second equivalent pair of phenyl rings, $C_{2b} - C_{7b}$ ($C_{2d} - C_{7d}$), are almost perpendicular to the $CoC₄$ plane with dihedral angles of 79.8 (84.5"). Except for monodentate coordination to the Co, the perchlorates appear to be free of strong interaction with other atoms. Shortest non-bonded distances between the oxygens and nearest neighbors, e.g. O-H 2.541, 2.567, 2.672 A; O-C 3.213, 3.219, 3.232 A; O-N 3.350 A; are not seriously shorter than the sum of van der Waals radii [14].

The most significant feature of this structure is coordination of the $ClO₄$, which occupy equivalent, *trans* positions. With Co-O bond lengths of 2.259(5)

TABLE 2. Atomic coordinates $(\times 10^4)$ and equivalent **isotropic displacement coefficients** $(A^2 \times 10^3)$

TABLE 3. Bond lengths (A)

 $(2.274(5)$ Å), this is a shorter Co-O bond than in $[Co(CH₃S(CH₂)₂SCH₃)₂(ClO₄)₂]$ (2.34(2) Å) [6] and significantly shorter than the weak $ClO₄$ coordination reported in $[Co(CNC_6H_5)_5ClO_4]ClO_4$. $0.5CH_2ClCH_2Cl$ (2.594(10) Å) [15], but still substantially longer than that expected for a Co-O single bond, as in $[Co(C_3H_6O_3)]_n$ (1.99(6) Å) [16]. (The short bond length of 2.10 Å reported for $[Co(Ph₂MeAsO)₄ClO₄]ClO₄[7]$ was not fully refined.) The Cl-O₁ bond length of 1.474(6) (1.472(5) \AA) is slightly lengthened relative to the average 1.420(8) $(1.417(8)$ Å) Cl-O bond length involving non-coordinated oxygen atoms. The 1.420 A bond length compares well with the average $1.425(20)$ Å value observed for $HClO₄·H₂O$ [17]. The averaged O_1 -Cl-O angles of 108.3(6) (108.2(6)°) show a slight decrease from perfect tetrahedral 109.5", while averaged O-Cl-O angles between non-coordinated oxygen atoms of $110.7(7)$ $(110.6(7)°)$ show a slight increase. These are relatively small distortions for a tetrahedral anion which is reasonably well coordinated through one oxygen atom. The $Cl-O₁-Co$

TABLE 4. Bond angles (")

$O(1)$ -Co(1)-C(1A)	97.0(2)	$O(1)$ -Co(1)-C(1B)	89.9(3)
$C(1A) - Co(1) - C(1B)$	93.5(3)	$O(1)$ -Co(1)-O(1A)	180.0(1)
$C(1A) - Co(1) - O(1A)$	83.0(2)	$C(1B)$ -Co(1)-O(1A)	90.1(3)
$O(1)$ -Co(1)-C(1AA)	83.0(2)	$C(1A)$ -Co(1)-C(1AA)	180.0(1)
$C(1B) - C(1) - C(1AA)$	86.5(3)	$O(1A)$ -Co(1)-C(1AA)	97.0(2)
$O(1)$ -Co (1) -C $(1BA)$	90.1(3)	$C(1A)$ -Co(1)-C(1BA)	86.5(3)
$C(1B)$ -Co(1)-C(1BA)	180.0(1)	$O(1A)$ -Co(1)-C(1BA)	89.9(3)
$C(1AA)$ - $Co(1)$ - $C(1BA)$	93.5(3)	$O(1)$ -Cl(1)-O(2)	108.4(4)
$O(1)$ -Cl(1)-O(3)	109.1(4)	$O(2)$ -Cl(1)-O(3)	109.7(4)
$O(1)$ -Cl(1)-O(4)	107.3(3)	$O(2)$ -Cl(1)-O(4)	110.6(4)
$O(1)$ -Cl(1)-O(4)	111.7(4)	$Co(1)-O(1)-Cl(1)$	125.4(3)
$C(1A) - N(1A) - C(2A)$	177.2(9)	Co(1) – C(1A) – N(1A)	175.2(8)
$N(1A) - C(2A) - C(3A)$	116.9(6)	$N(1A) - C(2A) - C(7A)$	118.9(8)
$C(3A) - C(2A) - C(7A)$	124.2(7)	$C(2A) - C(3A) - C(4A)$	116.2(7)
$C(2A)-C(3A)-C(8A)$	121.2(7)	$C(4A) - C(3A) - C(8A)$	122.6(9)
$C(3A) - C(4A) - C(5A)$	120.1(9)	$C(4A) - C(5A) - C(6A)$	122.2(8)
$C(5A) - C(6A) - C(7A)$	119.7(7)	$C(2A)-C(7A)-C(6A)$	117.6(8)
$C(2A) - C(7A) - C(10A)$	121.6(7)	$C(6A) - C(7A) - C(10A)$	120.8(7)
$C(3A) - C(8A) - C(9A)$	117.5(7)	$C(7A) - C(10A) - C(11A)$	112.0(8)
$C(1B) - N(1B) - C(2B)$	174.5(6)	Co(1) – C(1B) – N(1B)	174.2(6)
$N(1B) - C(2B) - C(3B)$	116.4(8)	$N(1B) - C(2B) - C(7B)$	118.9(7)
$C(3B) - C(2B) - C(7B)$	124.6(8)	$C(2B)$ -C(3B)-C(4B)	116.2(8)
$C(2B) - C(3B) - C(8B)$	122.7(8)	$C(4B) - C(3B) - C(8B)$	121.1(7)
$C(3B) - C(4B) - C(5B)$	120.6(7)	$C(4B)$ -C(5B)-C(6B)	122.1(9)
$C(5B) - C(6B) - C(7B)$	120.0(8)	$C(2B) - C(7B) - C(6B)$	116.5(7)
$C(2B) - C(7B) - C(10B)$	121.4(8)	$C(6B) - C(7B) - C(10B)$	122.1(8)
$C(3B) - C(8B) - C(9B)$	113.7(6)	$C(7B) - C(10B) - C(11B)$	114.3(6)
$O(1')$ -Co $(1')$ -C $(1C)$	92.8(3)	$O(1')$ -Co $(1')$ -C $(1D)$	83.0(3)
$C(1C)$ -Co $(1')$ -C $(1D)$	89.0(3)	$O(1')$ -Co(1')-O(1'A)	180.0(1)
$C(1C)$ - $Co(1')$ - $O(1'A)$	87.2(3)	$C(1D)$ -Co(1')-O(1'A)	97.0(3)
$O(1')$ -Co $(1')$ -C $(1CA)$	87.2(3)	$C(1C)$ -Co $(1')$ -C $(1CA)$	180.0(1)
$C(1D)$ -Co(1')-C(1CA)	91.0(3)	$O(1'A)$ -Co(1')-C(1CA)	92.8(3)
$O(1')$ -Co $(1')$ -C $(1DA)$	97.0(3)	$C(1C)$ -Co $(1')$ -C $(1DA)$	91.0(3)
$C(1D)$ -Co $(1')$ -C $(1DA)$	180.0(1)	$O(1'A)$ -Co $(1')$ -C $(1DA)$	83.0(3)
$C(1CA)-C0(1')-C(1DA)$	89.0(3)	$O(1') - Cl(1') - O(2')$	107.6(4)
$O(1')$ -Cl(1')-O(3')	109.3(3)	$O(2') - Cl(1') - O(3')$	110.4(4)
$O(1') - Cl(1') - O(4')$	107.9(4)	$O(2')$ -Cl(1')-O(4')	111.1(4)
$O(3')$ -Cl(1')-O(4')	110.4(5)	$Co(1')-O(1')-Cl(1')$	126.3(4)
$C(1C)-N(1C)-C(2C)$	176.1(8)	$Co(1')$ -C(1C)-N(1C)	178.8(8)
$N(1C) - C(2C) - C(3C)$	117.9(8)	$N(1C)-C(2C)-C(7C)$	117.8(7)
$C(3C) - C(2C) - C(7C)$	124.3(7)	$C(2C) - C(3C) - C(4C)$	116.2(9)
$C(2C) - C(3C) - C(8C)$	121.7(7)	$C(4C) - C(3C) - C(8C)$	122.1(7)
$C(3C) - C(4C) - C(5C)$	121.3(8)	$C(4C) - C(5C) - C(6C)$	120.1(8)
$C(5C)-C(6C)-C(7C)$	121.6(10)	$C(2C) - C(7C) - C(6C)$	116.5(7)
$C(2C) - C(7C) - C(10C)$	121.9(7)	$C(6C)$ - $C(7C)$ - $C(10C)$	121.6(9)
$C(3C)$ - $C(8C)$ - $C(9C)$	112.6(7)	$C(7C) - C(10C) - C(11C)$	112.8(7)
		$Co(1')$ –C(1D)–N(1D)	173.1(6)
$C(1D) - N(1D) - C(2D)$	174.0(7)	$N(1D) - C(2D) - C(7D)$	117.0(6)
$N(1D) - C(2D) - C(3D)$	118.7(7)		116.6(8)
$C(3D) - C(2D) - C(7D)$	124.2(8)	$C(2D) - C(3D) - C(4D)$	123.3(7)
$C(2D) - C(3D) - C(8D)$	120.1(8)	$C(4D) - C(3D) - C(8D)$	121.7(9)
$C(3D) - C(4D) - C(5D)$	120.4(7)	$C(4D) - C(5D) - C(6D)$	
$C(5D) - C(6D) - C(7D)$	120.6(8)	$C(2D) - C(7D) - C(6D)$	116.5(7)
$C(2D) - C(7D) - C(10D)$	122.6(8)	$C(6D) - C(7D) - C(10D)$	120.9(8)
$C(3D) - C(8D) - C(9D)$	117.6(8)	$C(7D) - C(10D) - C(11D)$	111.0(6)

angle **of 125.4(3) (126.3(4)") is smaller than that** observed for other coordinated ClO₄⁻, 130° [7], **135.6(7)" [15], but longer than those for common oxygen covalent bonds, such as 104.5" (H-O-H) [14],** 110.0° (Me-O-Me) [14], 123(1)° (O₃Cr-O-CrO₃²⁻,

in $Rb_2Cr_2O_7$) [18]. The two ClO_4^- are in equivalent, trans positions, i.e. O_1 -Co- O_{1A} is perfectly linear, 180.0(1) (180.0(1)°), but the O₁-Co-O_{1A} axis is tilted 7.0(2) $(7.2(3)°)$ from normal to the CoC₄ plane, thereby placing one ClO_4^- nearer to each equivalent

2, 3. The $\nu(-N \equiv C)$ pattern for $[CO(CNC_6H_3Et_2 2,6)(CIO_4)_2$ (top) and $[Co(CNC_6H_3Et_2-2,6)_5](BF_4)_2 \cdot H_2O$ (bottom).

CNR with the shorter Co-C bond. This positioning \overline{v} with the shorter C₀-C bond. This positioning over/under two CNR accentuates their inequivalency
with the other two CNR. $\frac{A}{A}$ are comet two CNN.

proximately square planar. Whereas the Co-C bond proximately square planar. Whereas the Co-C bond lengths are almost identical, 1.895(9) and 1.890(7) \AA (1.898(9), 1.884(8) \AA), and CoC₄ is planar, the $(1.050(7), 1.004(0), A)$, and COC₄ is planal, the $\frac{1}{2}$ different C - $\frac{1}{2}$ bond angles are unequal. 86.5(3) and 93.5(3)° (89.0(3), 91.0(3)°). This rectangular planar coordination combined with positioning of the $ClO₄$ and tilt of the phenyl rings, leads to inequivalent pairs of CNR ligands, reflected in the doubled $v(-N\equiv C)$. Many Co(CNR)₄²⁺ units experimentally show inequivalent CNR, but possibly through different distortions. The CNR in $[Co(CNC_6H_4Me-p)_4I_2]$, for example, are inequivalent pairs with equal Co–C bond lengths because of 5°

g. 4. Diffuse reflectance electronic spectra for $[Co(CNC_6H_3Et_2-2,6)_4(CIO_4)_2]$ (A) and $[Co(CNC_6H_3Et_2-2,6)_5](BF_4)_2 \cdot H_2O$ (B).

S4/C2 puckering of the CoC, equatorial plane [19]. T_{C_2} puckering of the Co C_4 equatorial plane [19]. The averaged Co–C bond lengths of $1.896(9)$ and 1.887(9) Å compare satisfactorily with 1.81(4) Å in $[Co(CNC₆H₄Me-p)₄I₂]$ [19], 1.84(2) Å average basal $Co-C$ in $[Co(CNC₆H₅)₅ClO₄]ClO₄·0.5CH₂ClCH₂Cl$ [15], and 1.82–1.92 Å in $[Co_2(CNCH_3)_{10}]$ $(ClO_4)_4$ [20]. This $Co(II)-C$ bond length is also quite similar to bond lengths observed for Co(III)–C, as 1.89 Å in $K_3[Co(CN)_5CF_2CHF_2]$ [21]; and Co(I)–C, as 1.88(3), 1.84(2), 1.83(2) Å in $[Co(CNC_6H_5)_5]ClO_4 \cdot HCCI_3$ [22]; 1.85(1), 1.83(2) Å in $[Co(CNC_6H_4F$ p ₃{P(OCH₃)₃}₂]BF₄[23]; and 1.88(2), 1.88(2), 1.84(2) Å in $[CO(CNCH₃)₅]ClO₄$ [24]. The oxidation state of Co therefore seems to have little effect on the Co-C bond length, and since all these bond distances are significantly shorter than the value proposed for a Co–C single bond, 2.15 Å $[20]$, multiple bond character is usually invoked $[15, 19-24]$. Substantial d_{π} - π^* backbonding has always been maintained for organoisocyanide complexes of transition metals.

The average $C \equiv N$ bond length of 1.152(12) $(1.152(12)$ Å) and N-C bond length of $1.399(12)$ $(1.400(12)$ Å) are in good agreement with other $Co(II)$ -arylisocyanide structures, 1.14(4) [19], 1.16 (fixed) [15]; 1.38(5) [19], 1.368(11)) [15] Å; and with free arylisocyanide molecules, average 1.16 Å [25]; or standard N-C bonds, 1.38 Å [14]. The observed $Co-C-N$ bond angles, 175.2(8), 174.2(6) (178.8(8), $(173.1(6)°)$, and C-N-C angles, $177.2(9)$, $174.5(6)$ $(176.1(8), 174.0(7)°)$, show comparable or less deviation from perfect linearity compared to other $Co(II)$ -organoisocvanide structures. Angles decreased to 172.8(12) and $173.5(10)°$ were reported for $[Co(CNC_6H_5)_5ClO_4]ClO_4 \cdot 0.5CH_2ClCH_2Cl$ [15], $[169.3(2.9)$ and $170.7(4.0)$ ° for $[Co_2(CNCH_3)_{10}] (ClO_4)_4$
 $[20]$, and $178.8(42)$ and $174.4(44)$ ° for $[1, 2]$ and $[1/8, 8(42)$ and $[1/4, 4(44)$ for $o(CNC_6H_4MeP)_4I_2$ [19]. Bond lengths and angles in the hydrocarbon portions of the CNR ligands also show reasonably small deviations from idealized ge-

Fig. 5. The IR $1250-850$ cm⁻¹ (nujol/NaCl) for [Co(CNC₆H₃Et₂-2,6)₄(ClO₄)₂] (top) and [Co(CNC₆H₃Et₂- $2,6$ ₅](BF₄)₂·H₂O (bottom).

ometry. The overall molecular structure fоr $[Co(CNC₆H₃Et₂-2,6)₄(ClO₄)₂]$, then, is free from major distortions, especially the almost-tetrahedral $ClO₄$.

$[Co(CNR)_{4}(ClO_{4})_{2}]$

Similarity between $[Co(CNC₆H₃Et₂-2,6)₄(ClO₄)₂]$ and previously reported $[Co(CNC₆H₃Me₂-2,6)₄]$ - $(CIO₄)₂$ [1] is very strong. In addition to identical color and solubility behavior, measured physical properties for these two complexes are very similar. The $\nu(-N=C)$ (see Fig. 2 and Fig. 1, ref. 1) are identical in pattern, the 2 cm^{-1} frequency difference being seen also in the free RNC [26]. Effective magnetic moments of 1.83 ± 0.02 BM for $[Co(CNC₆H₃Et₂ 2,6)_{4}(ClO_{4})_{7}$ and 1.84 ± 0.02 **BM** for $[Co(CNC₆H₃Me₂-2,6)₄](ClO₄)₂$ (re-measured) both indicate one-electron paramagnetism. Diffuse re-

flectance electronic spectra (Fig. 3 and Fig. 2, ref. 1) are also similar in overall appearance of number and relative intensities for resolved bands. Only the very broad, lowest-energy (first crystal field) band shows significant difference in wavelengths; ~ 876 nm in $[Co(CNC_6H_3Et_2-2,6)_4(CIO_4)_2]$ and ~919 nm in $[Co(CNC_6H_3Me_2-2,6)_4]$ (ClO₄)₂. The ν (ClO₄) IR for these complexes (Fig. 4 and Fig. 3, ref. 1) are also very similar. In $[Co(CNC₆H₃Et₂-2.6)₄(ClO₄)₂]$ the pattern is complicated by the presence of a 1059w band (from RNC) between ν_1 , ν_4 [27, 28] at 1135 and 1022 cm⁻¹ (1127 and 1029 cm⁻¹ in [Co- $(CNC_6H_3Me_2-2,6)_4(CIO_4)_2[1]$, but ν_1, ν_4 (the unsplit ν_3 for anionic, symmetrical ClO₄⁻ [27, 28]) are clearly the dominant features in both spectra. The 910s cm⁻¹ band (915–916 cm⁻¹ in $[Co(CNC₆H₃Me₂$ - $2,6)$ ₄ $(CIO₄)₂$ [1]) should be the ν_2 for monodentate $ClO₄$ ⁻ (the IR-inactive ν_1 for ionic $(T_d) ClO₄$ ⁻ which becomes IR-active ν_2 under $C_{3\nu}$ symmetry of monocoordinated $ClO₄⁻$).

Physical measurements suggest structural analogy between $[Co(CNC_6H_3Et_2-2,6)_4(CIO_4)_2]$ and $[Co (CNC_6H_3Me_2-2,6)_4(CIO_4)_2$, which is now probably better formulated as trans- $\text{[Co(CNC}_6H_3Me_2-2,6)_4$ - $(CIO₄)₂$, with two monodentate $ClO₄$ ⁻. This is what we previously predicted [1] on the basis of $\nu(CIO_4)$.

$[Co(CNR)_5]X_2 \cdot xH_2O$

Similarity between $[Co(CNC_6H_3Et_2-2,6)_5](BF_4)_2$. H_2O and $[Co(CNC_6H_3Me_2-2,6)_5](BF_4)_2 \cdot 0.5H_2O$ is not as pronounced as between the tetrakis complexes. The $\nu(-N\equiv C)$ for both $[Co(CNC_6H_3Et_2-2,6)_5]X_2$. xH_2O , $X = ClO_4$, BF₄, are different from all other pentakis(arylisocyanide)cobalt(II) complexes observed [26]. The strongest band at 2198, 2201 vs cm⁻¹ is expected, but 2153, 2155m and 2101, 2106w cm⁻¹ are low enough to suggest Co(I). Since the [Co(CNC₆H₃Et₂-2,6)₅](BF₄)₂·H₂O could be washed with cold EtOH and recrystallized from CH₂Cl₂/ ether without substantially altering $\nu(-N=C)$, all three bands are assigned to $[Co(CNR)_5](BF_4)_2 \cdot H_2O$. The electronic spectrum for $[Co(CNC_6H_3Et_2-2,6)_5]$ - $(BF_4)_2 \cdot H_2O$ (Fig. 4) is reasonably similar to those of $[Co(CNC_6H_3Me_2-2,6)_5]X_2 \cdot 0.5H_2O$, $X = BF_4$, ClO₄ [1], except for substantial displacement of the broad, lowest-energy band to 640 nm, from 745 and 733 nm, respectively. Effective magnetic moment of 1.95 BM indicates one-electron paramagnetism.

The $\nu(BF_4)$ IR for $[Co(CNC_6H_3Me_2-2,6)_5](BF_4)_2$. 0.5H₂O was not previously discussed [1], but comparison with $[Co(CNC₆H₃Et₂-2,6)₅](BF₄)₂ \cdot H₂O$ (Fig. 5) shows them to be similar. Spectra for [Co- $(CNC_6H_3Me_2-2,6)_5[(BF_4)_2 \cdot Y (Y=0.5H_2O, CH_2Cl_2,$ CHCl₃, CH₂ClCH₂Cl) and [Co(CNC₆H₃Et₂-2,6)₅]- $(BF₄)₂ \cdot H₂O$ in nujol are all best interpreted as one

intense broad band, with numerous shoulders. This is unlike $v(CIO₄)$ for derivatives of [Co- $(CNC_6H_3Me_2-2,6)_4(CIO_4)_2$ (see Fig. 3, ref. 1), which are best interpreted as two, albeit unequal, bands. Whereas $[Co(CNC₆H₃Me₂-2,6)₅](ClO₄)₂$ could be explained as having one ionic and one unidentate $ClO₄$ ⁻ [1], both BF₄⁻ in both $[Co(CNC₆H₃Me₂$ - $2,6$ ₅](BF₄)₂ · 0.5H₂O and [Co(CNC₆H₃Et₂-2,6)₅]- $(BF₄)₂ \cdot H₂O$ are probably strictly ionic.

 $[Co(CNC₆H₃Et₂-2,6)$ ₅ $(CIO₄)$ ₂. $xH₂O$ was only partially characterized, but is probably analogous to both $[Co(CNC_6H_3Et_2-2,6)_5](BF_4)_2 \cdot H_2O$ and $[Co (CNC₆H₃Me₂-2,6)$ ₅](ClO₄)₂.0.5H₂O. Azure crystals, which decomposed before characterization was complete, were obtained on two occasions; thereafter on subsequent attempts the product failed to crystallize promptly and only $[Co(CNC₆H₃Et₂-2,6)₄ (CIO₄)₂$] was eventually isolated. $[Co(CNC₆H₃Et₂ 2,6$ ₂)₅](ClO₄)₂ $\cdot xH_2O$ does exist, but is significantly less stable than $[Co(CNC₆H₃Me₂-2,6)₅](ClO₄)₂ \cdot 0.5H₂O$ or $[Co(CNC₆H₃Et₂-2,6)₅](BF₄)₂·H₂O$, which appear to be stable indefinitely at room conditions. Ease of $[Co(CNR)₄(ClO₄)₂]$ preparation therefore appears to be $R = 2.6 - Et_2C_6H_3 > 2.6 - Me_2C_6H_3$, which could suggest that increased steric hindrance in the arylisocyanide facilitates $ClO₄$ coordination. This possibility is currently being investigated.

Supplementary material

The first author may be contacted for supplementary tables of anisotropic thermal parameters for the non-hydrogen atoms, calculated hydrogen atom positions and their isotropic displacement coefficients, and observed and calculated structure factors of $[Co(CNC₆H₃Et₂-2,6)₄(ClO₄)₂].$

Acknowledgements

This work was supported by the Naval Research Laboratory and the University of Bahrain. Dr Clifford F. George, Jr., Laboratory for Structure of Matter, NRL, is gratefully acknowledged for performing the single-crystal X-ray structure of $[Co(CNC₆H₃Et₂ 2,6)_{4}(ClO_{4})_{2}$.

References

- C. A. L. Becker and J. C. Cooper, Inorg. *Chim. Acta, 1.58* (1989) 141.
- C. A. L. Becker and N. K. Homsy, *Inorg. Chim. Acta, 89* (1984) 95.
- 3 C. A. L. Becker, *Synth. React. Inorg. Met.-Org. Chem.*, *9 (1979) 445.*
- *C.* A. L. Becker, J. *Inorg Nucl. Chem., 42* (1980) *27.*
- *C.* A. L. Becker, Inorg. *Chim. Acta, 77 (1983) L247.*
- F. A. Cotton and D. L. Weaver, J. *Am. Chem. Sot., 87 (1965) 4189.*
- P. Pauling, G. B. Robertson and G. A. Rodley, *Nature (London), 207* (1965) *73.*
- 8 J. Lewis, R. S. Nyholm and G. A. Rodley, Nature (London), 207 (1965) 72.
- B. C. McKusick and 0. W. Webster, *Organic Syntheses,* Vol. 41, Wiley, New York, 1961, pp. 102-103; A. Ladenburg, *Berichte, 10* (1877) 1123.
- **10** B. N. Figgis and J. Lewis, in J. Lewis and R. G. Wilkins (eds.), *Modern Coordination Chemistry*, Interscience, New York, 1960, Ch. 6.
- 11 C. A. L. Becker, *Synth. React. Inorg. Met.-Org. Chem., 4* (1974) *213.*
- **12** W. R. Hertler and E. J. Corey, J. Org. Chem., 23 (1958) 1221.
- **13** G. Sheldrick, *SHELXTL 80,* minicomputer programs for X-ray structure determination, University of Göttingen, F.R.G., 1980.
- **14** R. C. Weast (ed.), *CRC Handbook of Chemistry and Physics,* CRC Press, Cleveland, OH, 51st edn., 1971.
- 15 F. A. Jurnak, D. R. Greig and K. N. Raymond, Inorg. *Chem., 14* (1975) 2585.
- 16 P. G. Slade, E. W. Radoslovich and M. Raupach, *Acta Crystallogr., Sect. B, 27* (1971) 2432.
- 17 S. Lee and G. B. Carpenter, J. *Phys. Chem., 63* (1959) 279.
- 18. P. Löferen and K. Waltersson, *Acta Chem. Scand., 25* (1971) 35.
- 19 C. J. Gilmore, S. F. Watkins and P. Woodward, J. *Chem. Sot. A,* (1969) *2833.*
- 20 F. A. Cotton, T. G. Dunne and J. S. Wood, *Inorg*. *Chem., 3* (1964) 1495.
- 21 R. Mason and D. R. Russell, *Chem. Commun.,* (1965) 182.
- 22 L. D. Brown, D. R. Greig and K. N. Raymond, *Inorg*. *Chem., 14* (1975) *645.*
- 23 R. A. Loghry and S. H. Simonsen, *Inorg. Chem., 17* (1978) 1986.
- 24 F. A. Cotton, T. G. Dunne and J. S. Wood, Inorg. *Chem., 4* (1965) 318.
- 25 D. Britton, *Perspect. Struct. Chem., I* (1967) 109.
- 26 C. A. L. Becker, *Znorg Chim. Acta, 27* (1978) L105.
- 27 K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds,* Part III, Wiley, New York, 4th edn., 1986.
- 28 M. R. Rosenthal. J. *Chem. Educ.. 50 (1973) 331.*