Products from the Reaction of Pyrrolimines and Chlordiphenylphosphine

HENRI BRUNNER*, LUDWIG GRÖTZINGER and HANNELORE WEBER

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstr. 31, D-8400 Regensburg, F.R.G. Received November 12, 1984

Abstract

The reaction of pyrrolimines 1 and 4 and chlordiphenylphosphine on exclusion of air and moisture leads to phosphination at the pyrrol nitrogen atom, giving products of type 2. On admission of air and moisture, however, addition of $OP(C_6H_5)_2$ to the C atom and of H to the N atom of the C=N bond in 1 and 4 takes place, producing 3 and 5. The carbon atoms of the 3-aminomethylpinane skeleton in 4 and 5 and their diastereotopic splitting are assigned in the ¹³C NMR spectra. According to an X-ray crystal structure analysis, 6 contains an additional $P(C_6H_5)_2$ substituent at the pyrrol nitrogen atom.

Introduction

The optically-active pyrrolimine 1 can be prepared from 2-pyrrolcarbaldehyde and (S)-(-)-1-phenylethylamine. Rh complexes containing deprotonated 1 as a ligand are efficient catalysts for the enantioselective hydrosilylation of acetophenone with diphenylsilane [1, 2]. The $P(C_6H_5)_2$ derivative 2 of imine 1 has been used as a ligand in Rh catalysts for the same reaction [3]. 2 has been obtained from the reaction of 1 with $CIP(C_6H_5)_2/NEt_3$ with rigorous exclusion of oxygen and moisture [3].

Synthesis and Characterization of 3, 5 and 6

Without these precautions, however, the reaction of 1 with $ClP(C_6H_5)_2/NEt_3$ takes a completely different course. An $OP(C_6H_5)_2$ group adds to the C and an H atom to the N of the C=N double bond in 1 to give 3 [4].

In the formation of 3 a new asymmetric center arises at the C atom in the α -position of the pyrrol ring. Therefore, two diastereomers **a** and **b** are possible for 3, which differ only in the configuration of the new asymmetric center. After crystallization from ether/petrolether 4:1 the phosphine oxide 3 is obtained as a colorless solid in a diastereomer ratio of 3a:3b = 79:21.

In the analogous reaction of imine 4 with CIP- $(C_6H_5)_2/NEt_3$ a mixture of the corresponding phosphine oxide 5a, b and compound 6a, b is obtained, which contains an additional $P(C_6H_5)_2$ substituent at the pyrrol nitrogen [4]. Both compounds form pairs of diastereomers. Recrystallization from ether/petrolether 4:1 gives a product ratio of 5a, b:6a, b = 88:12. After repeated recrystallizations the mixture contains crystals of 6 suitable for an X-ray structure analysis, which established the structure of 6 [5]. The characterization of compounds 3a, b, 5a, b and 6a, b was carried out by ¹H, ¹³C, ³¹P NMR spectroscopy, details of which are given below.

The ¹H NMR spectrum of **3a**, **b** contains characteristic resonances of the two NH protons, the amine–NH at 2.42 and the pyrrol–NH at 9.38 ppm. The ¹H signal of the CH group in α -position of the pyrrol ring, due to the phosphination, is shifted to 4.68 ppm (³¹P coupling 9.3 Hz). Both the doublet and the quartet of the CH(CH₃) group show diastereotopic splitting (Table I), the quartet being most suitable for the determination of the diastereomer ratio.

In Fig. 1B the ¹³C NMR spectrum of the pinane carbon atoms of compound **5a**, **b** is depicted.** For

^{*}Author to whom correspondence should be addressed.

^{**(-)-3-}Aminomethylpinane, a product of BASF AG, was used for the synthesis of imine 4.

	pinane-CH3	pinane-CH ₂	pinane-CH	pinane-C(CH ₃) ₂	NCH ₂	pyrrol-C	other \underline{C}
4	21.72(s)	33.70(3)	32.58(s)	32.01(s)	70.04(s)	109.42(s)	HC=N:
	22.92(s)	40.88(s)	37.54(s)			114.11(s)	151.88(s)
	28.02(s)		41.73(s)			121.78(s)	
			48.09(s)			130.28(s)	
5a, b	21.72(s)	33.34(s)	32.66(s)	38.73(s)	58.29(d)	107.06(s)	CHP:
	22.09(s) ^a	33.44(s) ^a	33.10(s) ^a		³ J _{PC} 13.5	108.30(s)	57.08(d)
	22.86(s)	40.80(s)	36.29(s)		58.42(d) ^a	108.15(d)	¹ J _{PC} 85.7
	22.94(s) ^a	41.37(s) ^a	37.09(s) ^a		³ J _{PC} 13.5	³ J _{PC} 7.5	57.94(d) ^a
	22.97(s)		41.50(s)			108.50(d) ^a	¹ J _{PC} 84.5
			41.66(s) ^a			³ J _{PC} 8.5	phenyl-C:
			47.80(s)			118.54(s)	125.41-133.70
			47.99(s) ^a				

TABLE I. ¹³C-NMR-Parameter of 4 and 5a, b (CDCl₃; i-TMS)^b

^a Diastereotopic splitting. ^b δ -values in ppm, coupling constants J in Hz, Bruker WH 90.

Fig. 1. ¹³C NMR spectra of 4 (A) and 5a, b (B) (pinane region). CDCl₃, i-TMS, Bruker WH 90.

the interpretation of this spectrum a 13 C NMR spectrum of the corresponding imine 4 was measured (Fig. 1A). The comparison of these two spectra allows an unequivocal assignment of the 10 carbon atoms of the pinane skeleton (Table I). The spectrum of compound 5a, b shows diastereotopic splitting for most of the CH₃-, CH₂-, CH-groups of the pinane portion of the molecule, and also for one of the pyrrol C atoms (Table I). The ¹³C spectra of 4 and 5a, b exhibit remarkable differences in the chemical

shifts of the C-atoms in α -position to the pyrrol ring. In compound 4 the α -C appears at 151.88 ppm, a value normal for an azomethine C atom, whereas in compound 5a, b it is shifted to high field (57.08 ppm) showing phosphorus coupling and diastereotopic splitting (Table I).

The ³¹P signal of **3a**, **b** is a singlet at 33.6 ppm; that of **5a**, **b**, however, shows the diastereotopic splitting with two singlets at 33.1 and 33.3 ppm. In **6a**, **b** the two phosphorus atoms cause a P-Pcoupling of ${}^{4}J_{PP} = 2.5$ Hz. For one of the ${}^{31}P$ signals there is a diastereotopic splitting. On the basis of the differences in the chemical shifts of the ${}^{31}P$ signals the diastereomer ratio for both **5a/5b** and **6a/6b** can be roughly estimated to be close to 1:1.

Experimental

3. 2.59 g (12.9 mmol) 1 and 1.30 g (12.9 mmol) NEt₃ were dissolved in 200 ml of ether at -40 °C. 2.84 g (12.9 mmol) ClP(C₆H₅)₂ in 50 ml of ether were added slowly during 30 min (admission of air). A white precipitate formed. The reaction mixture was slowly warmed to room temperature and heated to reflux for 2 h. Filtration through 5 cm SiO₂ and evaporation of the solvent gave a yellow, oily product which was purified by SiO₂-chromatography with ether/petrol ether 4:1. After crystallization from ether/petrol ether 4:1 the phosphine oxide 3a, b was obtained as a colourless solid (diastereomer ratio a:b = 79:21).

Yield: 2.9 g (57%). M.p.: 157–160 °C. IR: ν (NH) 3230, ν (PO) 1174 cm⁻¹ (KBr). ¹H NMR (CDCl₃, i-TMS, 250 MHz Bruker WM 250): CH(CH₃) 1.19(d) ³J_{HH} 7.0; 1.20(d) ³J_{HH} 6.5; CH(CH₃) 3.47(q) ³J_{HH} 7.0, 3.69(q) ³J_{HH} 6.3; CHP 4.68(t) ³J_{HH} 9.3, ²J_{PH} 10.1; pyrrol–H 5.75(m), 5.98(m), 6.65(m); phenyl– H 7.12–7.81(m); pyrrol--NH 9.38(m); amine-NH 2.42(m). ³¹P NMR (CDCl₃/CHCl₃ 1:3, ext. 85% H_3PO_4 , 101.25 MHz Bruker WM 250): CPO(C₆H₅)₂ 33.6(s).

5, 6. The analogous reaction of imine 4 with CIP- $(C_6H_5)_2/NEt_3$ and work-up gave a mixture of 5a, b and 6a, b after crystallization from ether/petrolether in a ratio of 88:12.

5a, b. Yield: 3.5 g (61%). M.p.: 151-153 °C. IR: v(NH) 3308, 3225, v(PO) 1187 cm⁻¹ (KBr). ¹H NMR (CDCl₃, i-TMS, 250 MHz Bruker WM 250): pinane-H 0.59-2.80(m); CHP 4.53(t) ³J_{HH} 5.9, ²J_{PN} 9.0; pyrrol-H 5.82(m), 6.02(m), 6.69(m); phenyl-H 7.25-7.87(m); pyrrol-NH 9.51(m). ³¹P NMR (CDCl₃/CHCl₃ 1:3, ext. 85% H₃PO₄, 101.25 MHz Bruker WM 250): 33.1(s), 33.3(s).

6a, b. Yield: 0.5 g (8%). ³¹P NMR (CDCl₃/CHCl₃ 1:3, ext. 85% H₃PO₄, 101.25 MHz Bruker WM 250): 31.1(d), ⁴J_{PP} 2.5, 31.0(d), ⁴J_{PP} 2.5, 33.8(s).

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and BASF AG for support of this work.

References

- 1 H. Brunner and G. Riepl, Angew. Chem., 94, 369 (1982); Angew. Chem., Int. Ed. Engl., 21, 377 (1982); Angew. Chem. Suppl., 769 (1982).
- 2 H. Brunner, B. Reiter and G. Riepl, Chem. Ber., 117, 1330 (1984).
- 3 H. Brunner and H. Weber, Chem. Ber., submitted for publication.
- 4 L. Grötzinger, Zulassungsarbeit, University of Regensburg, 1984.
- 5 G. M. Sheldrick and P. G. Jones, personal communication.