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Abstract

Ruthenium(III) Schiff base complexes of the composition [RuLXY] where L=Schiff base, viz.
bis(salicylaldehyde)-o-phenylenediimine (saloph), bis(salicylaildehyde)ethylenediimine (salen), bis-
(salicylaldehyde)diethylenetriimine  (saldien)  bis(picolinaldehyde)-o-phenylenediimine  (picoph),
bis(picolinaldehyde)ethylenediimine  (picen),  bis(picolinaldehyde)diethylenetriimine (picdien);
X =chloro(Cl™); Y =chloro(Cl ™), imidazole (Im) or 2-methylimidazole (2-Melm) were synthesized and
characterized by various physicochemical methods. The reversible binding of carbon monoxide to the
Ru(III) Schiff base complexes was carried out in DMF, CH,CN, CH;0H and CH,COCH; at 10, 25
and 40 °C. The polarity of the solvents as well as the electron donating substituents on Schiff base
complexes increase the affinity of the complexes for CO. The thermodynamic parameters AH®, AG®

and AS° for the carbonylation of Schiff base complexes were evaluated.

Introduction

The proteins in haemoglobin and myoglobin play
an important role in the discrimination reaction
against the binding of CO relative to that of O, [1].
The distal histidine is thought to be responsible for
the reduced CO affinities by steric, electronic and
solvation effects [2, 3]. Several studies [4-6] have
shown that the binding of O, and CO involves
different activation barriers and rate determining
steps. The pressure dependence of the overall equi-
librium constant for the formation of MbO, and
release of O, has also been envisaged. A number
of experimental data [7] have shown a reversible
transition between low affinity (T) and high affinity
quaternary structures (R) in carbon monooxyhae-
moglobin CO(Hb) and deoxy Hb, respectively. The
photolysis of the heme CO adducts provides a means
for studying the dynamic features of the quaternary
structural transition. The optical absorption [8-10]
and visible resonance Raman techniques [11-13] were
helpful for structural elucidation following the pho-
tolysis of COHD.

Some insertion reactions [14] of CO in iron—carbon
bonds of alkyl porphyrins generated from the reaction
of alkyl halides with electronically produced low
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valent iron porphyrins with the exception of benzyl
derivatives have also been reported [14].

In continuation of our earlier work on solid state
carbonyl [15] ruthenium(III) Schiff base complexes
[16, 17] and their reversible binding with CO, we
report in this paper the synthesis of a number of
ruthenium(III) Schiff base complexes with variation
of donor sites (N,O,, N;O; and N,). To explore the
solvation effects on CO binding, the thermodynamic
parameters AH° and AS° for the formation of these
complexes were evaluated in solvents of different
polarity. Variations were also made in the axial
coordination of the complexes by chloro, Im and 2-
Melm groups in order to assess the CO affinity of
these complexes with a change in the o-donor ability
of the axial ligands.

Experimental

Material and methods

RuCl;-3H,0 (Johnson Matthey), diethylenetria-
mine, imidazole, 2-methylimidazole (Fluka) were of
AR grade and were used as such. Salicylaldehyde,
acetone, acetonitrile, methanol, dimethylformamide,
pyridine 2-carboxyaldehyde and ethylenediamine
were distilled prior to use. o-Phenylenediamine (al-
pha) was recrystallized twice from benzene. All sol-
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vents were of AR grade and purified further by the
usual laboratory techniques. Doubly distilled deion-
ized water was used whenever required. The complex
K;[RuCls(H,0)] [18] and the Schiff bases, saloph,
salen, picoph, picen, saldien and picdien were pre-
pared under oxygen free N,/Ar atmosphere by known
procedures [16, 17, 19]. The completion of reaction
and homogeneity of the complexes were checked on
silica gel coated glass thin layer chromatography
plates.

Preparation of the complexes
bis(salicylaldehyde)-o-phenylenediiminatodichloro
ruthenate(III), K[Ru(saloph)Cl,] (1);
bis(salicylaldehyde)-o-phenylenediiminatochloro-
imidazoleruthenium(III), [Ru(saloph)(Im)Cl] (2);
bis(salicylaldehyde)-o-phenylenediiminatochloro-
2-methylimidazoleruthenium(III), [Ru(saloph)-
(2-MeIm)Cl] (3);
bis(salicylaldehyde)ethylenediiminatodichloro-
ruthenate(III), K[Ru(salen)Cl,] (4);
bis(salicylaldehyde)ethylenediiminatochloro-
imidazoleruthenium(III), [Ru(salen)(Im)Cl] (5);
bis(salicylaldehyde)ethylenediiminatochloro-
2-methylimidazoleruthenium(III}), [Ru(salen)-
(2-MeIm)Cl] (6);
bis(salicylaldehyde)diethylenetriiminatochloro-
ruthenium(III), [Ru(saldien)Cl] (7);
bis(picolinaldehyde)-o-phenylenediiminatodichloro-
ruthenium(III), [Ru(picoph)ClL,]Cl (8);
bis(picolinaldehyde)-o-phenylenediiminatochloro-
imidazoleruthenium(III), [Ru(picoph)(Im)CIl]Cl, (9);
bis(picolinaldehyde)-o-phenylenediiminatochloro-
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2-methylimidazoleruthenium(IIT), [Ru(picoph)-
(2-MeIm)CI]Cl, (10);
bis(picolinaldehyde )ethylenediiminatodichloro-
ruthenate(IIT), [Ru(picen)Cl,|Cl (11);
bis(picolinaldehyde)ethylenediiminatochloro-
imidazoleruthenium(III), [Ru(picen)(Im)CI]|Cl, (12);
bis(picolinaldehyde)ethylenediiminatochloro
2-methylimidazoleruthenium(III), [Ru(picen)-
(2-MeIm)CI|CI, (13);
bis(picolinaldehyde)diethylenetriiminatochloro-
ruthenium(III), [Ru(picdien)Cl] (14).

All the above mentioned complexes were synthe-
sized by reported [15-17] procedures in N,/Ar at-
mosphere.

Physical measurements

Microanalysis of the compounds was carried out
by a Carlo Erba analysis instrument, model 1106 at
CSMCRI, Bhavnagar. Molar conductivity was mea-
sured at room temperature on a Digisun Electronics
conductivity bridge. IR spectra were recorded on
Nicolet 200 SXV FT-IR spectrometer in nujol mulls/
KBr. The electronic spectra were recorded on a
Shimadzu UV-Vis recording model UV-160 spec-
trophotometer. Cyclic voltammograms were recorded
with a Princeton Applied Research (PAR) instrument
as described earlier [16, 17, 20]. The room tem-
perature magnetic susceptibility of the complexes
was determined by the Guoy method using
Hg[Co(SCN),] as calibrant, and experiment magnetic
susceptibility was corrected for diamagnetism [21].

CO uptake measurements

In order to evaluate the equilibrium constant for
carbonylation Ko by UV-Vis spectrophotometry,
solutions of the complexes were prepared in the
concentration range 5x107* M in appropriate sol-
vents like DMF CH;CN, CH;0H and (CH,;),C=0.
The solvents were saturated with CO and solutions
with different concentrations of dissolved CO were
prepared by diluting the saturated solution with
degassed solutions in the ratio 1:1, 1:2 and 1:3. The
spectrum was recorded immediately at 10, 25 and
40 °C by monitoring the peak around (Ana,=405-570
nm) and a constant value of absorbance was noted
for each set. The solubility of CO in the solvents
methanol, methyl cyanide, dimethyl formamide and
acetone was measured separately at different tem-
peratures. The reaction of the complexes with CO
may be written as:

ML +CO — [MLCO]

_ [MLCO]
2" [ML][CO]



The equilibrium constant Ko was calculated by
reported methods [16, 17, 22].

The P, value (equilibrium CO pressure at half
saturation) was calculated by the expression:

Po= —

172 KCO
where K,=Henry’s law constant given by the re-
ciprocal of solubility of CO in the medium at 1 atm.
at a particular temperature.

Results and discussion

The elemental analysis and molar conductance of
ruthenium(III) Schiff base complexes 1-14 with the
general formulae [RuLXY] (where L=Schiff base;
X=Cl7; Y=Cl", Im, 2-MeIm) are in good accord
with the suggested formulation of the complexes.
All the complexes are paramagnetic with p.g in the
range 1.97-2.06 BM indicating that the complexes
are low spin Ru(III) species with a (t,)*> ground
state configuration.

The broad ligational vO—H band of the Schiff
bases near 3380 cm ™! disappeared on complexation
of the O—H to the metal ion. The v(C—O) band
at 1280 cm™! in the free Schiff bases was shifted
slightly to lower wave number on coordination [23].
The strong azomethine v(H—C=N) band in the
ligands in the range 1625-1635 cm ™! was shifted by
25-30 cm~! towards lower energy on coordination
indicating the coordination of the imine group to
the metal ion. Thus the Schiff base ligand acts as
a dianionic tetradentate or pentadentate ligand on
coordination to the metal ion. The »(M—Cl) and
v(M—N) bands were observed around 325 cm™" in
all the complexes. In the case of the complexes
containing imidazole and 2-methylimidazole the
bands corresponding to these groups were observed
near 600 and 1000 cm™! (Table 1).

Electronic spectra

The electronic spectra of all the complexes were
recorded in DMF. The strong band near 300
(e=5770) and 350 (e=25000) nm are assigned to
the ligational transitions in the azomethine group
[15-17]. These bands undergo slight hypsochromic
shifts on complexation. The bands in the range
470490 nm were assigned to LMCT bands while
the d—d bands lie near 900 nm. The presence of
imidazole or 2-methylimidazole in the coordination
sphere of the metal ion could not, however, be
confirmed by electronic spectra of the complexes
(Table 1) since the characteristic ligational peaks of
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imidazole in the 300-310 nm region overlap with
the ligational peaks of the Schiff bases.

The EPR studies of chloro complexes [15] of
Ru(IIT) have shown the displacement of the axial
CI~ group in the Schiff base complexes by a solvent
or CO. The lability of the chloro group is very
important for catalysis of the complexes in carbon-
ylation reactions [24]. The fact that the axial CI~
in Schiff base complexes is readily displaced by CO
is probably a consequence of the difference in the
nature of the ligand bonding. Chloride ion is pre-
dominantly a o-donor whereas CO is a w-acceptor.
Consequently when d,, and d,, orbitals (assuming
the z axis is directly towards C1™ or CO) are occupied
the pm orbitals of CI~™ are unable to donate to
ruthenium whereas CO can accept d density into
its low lying empty =* orbital giving more covalency
to the Ru-CO bond.

This is due to the lower value of the orbital
reduction factor for carbonyl complexes {15} than
for chloro complexes. The wr-acceptor capacity of
CO depends on the oxidation state of the metal ion,
Pu(IIT) complexes have a relatively weaker Ru—~-CO
bond as compared to Ru(Il) complexes because of
the lower spin density available on ruthenium(III)
dm-orbitals to backdonation to CO. The Ru(III)
carbonyl complexes are thus very reactive in nu-
cleophilic reactions of CO.

Carbonylation studies

The equilibrium constant for carbonylation Ko
was evaluated by UV-Vis spectra of the complexes
in DMF, CH,;CN, CH;0OH and (CH,),C=0 saturated
with CO. The solutions with different concentrations
of dissolved CO were then prepared by diluting the
saturated solution of CO with the degassed solvents
in the ratio of 1:1, 1:2 and 1:3. In all the complexes
there is an increase in absorbance in the range
(Amax =405-570 nm) with time. The electronic spectra
of K[Ru(saloph)Cl;] and [Ru(picoph)Cl,]Cl in DMF
saturated with CO are depicted in Figs. 1 and 2. A
maximum increase in absorbance was observed at
471, 550 nm and assigned to the MLCi band.
Carbonylation of these complexes in the temperature
range studied does not however cause a reduction
of Ru(IIl) to Ru(II). This was confirmed by obser-
vation of the Ru(III)/Ru(II} couple in d.c. and
differential pulse polarograms (DPP) of these com-
plexes in solution saturated with CO gas in DMF
at —0.210 to —0.480 V. The Ru(II)/Ru(I) peak was
absent in the DPP of the couples. The reversible
binding of CO in these complexes was confirmed by
flushing nitrogen through the solution of these com-
plexes which displaces CO. This displacement reflects
on the lower stability of Ru(III) carbonyl species as
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Fig. 1. The UV-Vis absorption spectral change during
carbonylation of K[Ru(saloph)Cl,] in DMF (1x10* M)
with time: (—) soon after preparation, (-~—-) after 4 h;
in 15 min intervals at 303 K and path length /=0.2 cm.
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Fig. 2. The UV-Vis absorption spectral change during
carbonylation of [Ru(picoph)CL]Cl in DMF (1x 1073 M)
with time: (—) soon after preparation, (- —-) after 4 h;
in 15 min intervals at 303 K and path length /=0.2 cm.

compared to the very stable Ru(II) carbonyl com-
plexes on the basis of the greater softness and lower
electronegativity of Ru(Il} as compared to Ru(III).

Solvation effect

The solute-solvent interaction [25] depends on
the nature of both the solvent and solute in terms
of dipolar interaction and dispersion forces. Solute
induced modification of solvent-solvent interaction
is due to structural changes produced in the solvent
by creation of a cavity of a suitable size to incorporate
the solute with consequent reorganization of the
solvent molecule around the solute through hydrogen
bonding. The discrimination in binding of CO de-
pends on the polarity of the solvent as well as the
electron donating substituent such as chloro, im-
idazole and 2-methylimidazole on the axial position
of the Schiff base complexes.

The CO affinity of the Schiff base complexes as
measured by the enthalpy of complex formation AH°
is the lowest in DMF which is the most polar and
maximum for the least polar solvent acetone. The
affinities decrease in the order, acetone>
methanol > CH,;CN > DMF which is the reverse of
the order of polarity as well as the dielectric constant
of the solvent. This observation is explained in terms
of dipole—dipole interaction causing association of
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the more polar solvent molecule around the com-
plexes which weakens the CO affinity of the system.
The solvation factor of the carbonylation reaction
implies the difference of the free energy changes
between solvated and non-solvated species. The sol-
vation of the Ru(III)-Schiff base complexes implies
a displacement of Cl~ from the coordination sphere
of the metal ion as supported by EPR studies [15].
The solvent is then displaced by CO to form the
carbonyl complex. In the case of a polar solvent the
solvent is more strongly coordinated to the metal
ion than CO, hence there is a reduction in the
affinity of CO. Thus the CO affinity decreases from
less polar to the more polar solvent (Table 2). The
P, values obtained in several solvents are listed in
Table 2. This trend is just the reverse for O, affinity
of iron(II) porphyrins which increases with increase
of solvent polarity [26]. The solvation effect of the
Ru(IIT)-Schiff base complexes is similar to the flat
chelated hemes that are more strongly solvated than
the picket fence complexes [27], which is one of the
factors for the higher discrimination of CO,
Kco/Kp, in flat hemes as compared to the hydrophobic
picket fence.

The equilibrium constant for the carbonylation
reaction Koo (Table 2) depends on the nature of
the axial ligand and decreases in the order Im > 2-
Melm > chloro. This is due to the greater o-donor
capacities of imidazole and 2-methylimidazole as
compared to chloro, causing an increase in electron
density at the metal centre which in turn increases
the d7r—pm backdonation from the metal ion to the
coordinated CO, thereby increasing the stability of
the corresponding complexes. In the case of 2-
methylimidazole which is more basic than imidazole
the stability is less than the imidazole complexes.
This may be due to steric hindrance by the methyl
group which predominates over the higher basicity
of 2-methylimidazole [16, 17, 20]. The stability of
the carbonyl complexes with respect to the equatorial
ligand decreases in the order saloph>picoph
> saldien > picdien > salen > picen.

The saloph complexes are in general more stable
than the salen complexes [15]. The same trend was
also observed in bis(naphthaldehyde)-o-phenylene-
diimine (naphoph) and bis(naphthaldehyde)-
ethylenediimine (naphen) complexes [17]. This seems
to be a structural effect of the doming in the case
of saloph and naphoph complexes which increases
the stability of the carbonyl complexes. Doming of
the equatorial ligand also plays an important role
in the dioxygen affinity of porphyrins [27-29].

The stability of these Ru(IIT) carbonyl complexes
is about an order of magnitude lower than other
Schiff base complexes already reported by us [16,
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17]. The complexes exhibit discrimination towards
CO binding, though the electronic effects of the axial
and equatorial ligands are about the same. The lower
stability of Ru(III) carbonyls seems to be due to a
weak dm-pw backbonding to CO in these complexes.
The situation is therefore, the reverse of the Fe(II)
porphyrins [27, 29] where CO exhibits a strong
bonding to the metal ion. The discrimination against
CO binding in Fe(II) porphyrins comes mostly from
the steric effects such as the interaction of distal
histidine in haemoglobin or the size of the pocket
[29] containing the CO. In the Ru(III) carbonyls
studied, the CO is reversibly bonded and is displaced
by bubbling N, through the solution in contrast to
the irreversible binding of CO in Fe(II) porphyrins
[30].

The values of the thermodynamic parameters AG®,
AH® and AS° associated with the equilibrium constant
for carbonylation Ko are in agreement with those
reported earlier [16, 17]. The enthalpies are less
exothermic and the entropies are less negative for
saloph complexes than naphoph complexes which
reflects on the weaker M—CO bond in the saloph
complexes than those already reported by us [16,
17].
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