Preparation and characterization of two geometrical isomers of the aqua(ethylenediamine-*N*,*N*,*N*'-tri-3-propionatopropionic acid)chromium(III) complex: X-ray structure of *cis-eq*-[Cr(Hedtp)(H₂O)]·5H₂O

Narumi Sakagami and Sumio Kaizaki*

Department of Chemistry, Faculty of Science, Osaka University, Osaka 560 (Japan)

(Received January 16, 1992)

Abstract

Two geometrical isomers for $[Cr(Hedtp)(H_2O)]$ (Hedtp=ethylenediamine-*N,N,N'*-tri-3-propionatepropionic acid) were obtained from the most stable diastereoisomer of $[Cr(edtp)]^-$ (edtp=ethylenediamine-*N,N,N',N'*-tetra-3-propionate) by passing through a column of cation-exchange resin in the H⁺ form. The geometrical structure of one isomer (H-1) was found to be *cis-eq* by using the X-ray diffraction method. Crystal data for *cis-eq*-[Cr(Hedtp)(H_2O]·5H_2O are monoclinic with space group $P_{2_1/c}$: a=9.796(6), b=15.195(6), c=14.825(2) Å, $\beta=94.70(4)^\circ$ and Z=4. The geometrical structure of another isomer (H-2) was assigned to *trans-eq* on the basis of the ²H NMR and the magnetic circular dichroism (MCD) spectra.

Introduction

It has been reported that there are three diastereoisomers for [Cr(edtp)]⁻ (edtp = ethylenediamine-N, N, N', N'-tetra-3-propionate) and its analogues [1]. In aqueous (or weakly acid) solution, two of the isomers (I and II) decompose with a C-N bond cleavage in the 3-propionato chelate at the R (out-of-plane) ring into the diamine-N,N,N'-tri-3-propionato complex and 3-hydroxypropionic acid. The other isomer (III) is stable in acidic solution; it causes neither decomposition with a C-N bond cleavage, nor dissociation in the carboxylates to form the pentadentate edtp complex in contrast to the case of the edta (ethylenediamine-N, N, N', N'tetraacetate) type complexes [2]. Radanovic et al. have mentioned that for the most stable isomer of $[Cr(edtp)]^{-1}$ (E-III) the edtp ligand behaved as a hexadentate even when the lithium salt was converted into the acid form [3].

We recently obtained two isomers with one uncoordinated protonated 3-propionate from the E-III by using column chromatography. This paper reports the preparation and characterization of the first example of the geometrical isomers of the chromium(III) complex with a pentadentate edtp ligand, [Cr(Hedtp)(H_2O)].

Experimental

Preparation of the complexes

The preparation and isolation of $[Cr(edtp)]^-$ (or $[Cr(edtp-d)]^-$ with deuteriated 2-methylene of 3-propionates) isomers were described previously [1]. The most stable isomer E-III (or E-III-d) was passed through a 4×20 cm column of Dowex 50W-X4 (200-400 mesh) cation-exchange resin in the H⁺ form. By elution with water, three bands (red purple, bluish purple and violet) were obtained. The first eluate was identified with E-III (or E-III-d) by the absorption spectrum. The second and third eluates (H-1 and H-2 or H-1-d and H-2-d, respectively) were obtained by adding acetone to the aqueous solution.

Anal. Calc. for $[Cr(Hedtp)(H_2O)] \cdot 2.5H_2O$ (H-1): C, 36.53; H, 6.13; N, 6.08. Found: C, 36.41; H, 6.14; N, 6.15%. Calc. for $[Cr(Hedtp)(H_2O] \cdot 2.5H_2O$ (H-2): C, 36.53; H, 6.13; N, 6.08. Found: C, 36.19; H, 6.12; N, 6.10%.

X-ray study of H-1

All measurements were made on a Rigaku AFC5R diffractometer with graphite monochromated Mo K α radiation and the calculations were performed using the TEXSAN crystallographic software package of Molecular Structure Corporation by VAX computer at the

^{*}Author to whom correspondence should be addressed.

X-ray diffraction service of the Department of Chemistry of Osaka University.

Crystals of the H-1 isomer suitable for the X-ray analysis were grown in water-acetone solution. A red purple crystal $(0.15 \times 0.10 \times 0.10 \text{ mm})$ was loaded into a glass capillary. The data were collected at 23 ± 1 °C using the ω -2 θ scan technique to a maximum 2 θ value of 45.1°. Of the 2766 reflections which were collected 2561 were unique. The intensities of three representative reflections which were measured after every 100 reflections declined by -4.90%. A linear correction factor was applied to the data to account for this phenomena.

The structure was solved by direct methods. The difference-Fourier map revealed five water molecules of crystallization in the crystal of H-1. The positional and thermal parameters were refined by the block-diagonal least-squares refinement. The non-hydrogen atoms were found in the difference-Fourier map, and their isotropic thermal parameters were refined. The final cycle of block-diagonal least-squares refinement was based on 1390 observed reflections ($I > 2\sigma(I)$). The final R value was 0.040 and $R_w = 0.040$. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.33 and -0.37 e/Å³, respectively.

Crystallographic data and fractional coordinates of non-hydrogen atoms for the H-1 are given in Tables 1 and 2.

Measurements

Absorption spectra were measured by a Shimadzu UV-2100 spectrophotometer. IR spectra were obtained by a Shimadzu IR-385 spectrophotometer using KBr disks. The ²H NMR spectra were measured on a Jeol JNM-GSX270 spectrometer. The magnetic circular dichroism (MCD) spectra were recorded in a magnetic

TABLE 1. Crystallographic data of *cis-eq-*[Cr(Hedtp)(H₂O)] · 5H₂O (H-1)

Formula	$C_{14}H_{23}O_9N_2Cr \cdot 5H_2O$
Crystal system	monoclinic
Space group	$P2_1/c$
a (Å)	9.796(6)
b (Å)	15.195(6)
c (Å)	14.825(2)
β (°)	94.70(4)
Z	4
D_{calc} (g cm ⁻³)	1.526
Crystal size (mm)	$0.15 \times 0.10 \times 0.10$
μ (Mo K α) (cm ⁻¹)	5.74
No. unique reflections	2561
No. observed reflections	1390
R*	0.040
R _w ^b	0.040
${}^{*}R = \sum F_{*} - F_{*} /\sum F_{*} $	${}^{b}R = [(\sum w(F - F)^2 / \sum wF^2)]^{1/2}.$

 $w = 1/\sigma^2(F_0) + 0.0078F_0^2$].

 $R_{w} = [(\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma w F_{o}^{2})]^{1/2};$

TABLE 2. Fractional coordinates of *cis-eq*- $[Cr(Hedtp)(H_2O)] \cdot 5H_2O$ (H-1)

Atom	x	у	z
Cr	0.3329(1)	0.12408(8)	0.68705(8)
O(1)	0.4771(4)	0.2116(3)	0.6972(3)
O(2)	0.6872(5)	0.2590(3)	0.7329(3)
O(3)	0.4671(5)	0.0310(3)	0.6760(3)
O(4)	0.5704(6)	-0.0945(3)	0.6951(4)
O(5)	0.1915(4)	0.0345(3)	0.6652(3)
O(6)	-0.0017(5)	-0.0255(3)	0.6107(3)
O(7)	0.0578(6)	0.5236(3)	0.6279(4)
O(8)	0.2284(5)	0.4609(3)	0.5620(3)
0(9)	0.3332(4)	0.1460(3)	0.5523(3)
N(1)	0.3469(5)	0.1065(3)	0.8267(4)
N(2)	0.1784(5)	0.2209(3)	0.7067(4)
C(1)	0.4694(7)	0.1470(5)	0.8783(5)
C(2)	0.6000(7)	0.1546(5)	0.8318(5)
C(3)	0.5887(7)	0.2121(5)	0.7496(5)
C(4)	0.3383(8)	0.0106(4)	0.8472(5)
C(5)	0.4586(8)	-0.0434(5)	0.8201(5)
C(6)	0.4997(7)	-0.0359(5)	0.7241(5)
C(7)	0.0337(7)	0.1903(5)	0.6845(5)
C(8)	0.0159(7)	0.1306(5)	0.6022(5)
C(9)	0.0697(7)	0.0399(5)	0.6262(5)
C(10)	0.2025(7)	0.3022(4)	0.6532(5)
C(11)	0.1210(7)	0.3830(5)	0.6769(5)
C(12)	0.1431(7)	0.4586(5)	0.6148(5)
C(13)	0.2217(7)	0.1523(5)	0.8558(5)
C(14)	0.2007(7)	0.2383(4)	0.8058(5)
O(W1)	0.5845(5)	0.1342(4)	0.4846(4)
O(W2)	0.2732(5)	0.0150(3)	0.4374(3)
O(W3)	0.0648(5)	0.6646(3)	0.5265(4)
O(W4)	0.1100(5)	0.8083(3)	0.6341(4)
O(W5)	0.7058(6)	0.2944(4)	0.5543(4)

field of 1.5 T ($1T=1\times10^4$ G) with a JASCO J-500C spectropolarimeter at room temperature.

Results and discussion

Infrared (IR) and absorption (AB) spectra

The analytical data show that the two complexes (H-1 and H-2) newly obtained from E-III by chromatography have the same composition as the acid form of the edtp complex, H[Cr(edtp)] $\cdot nH_2O$ (see 'Experimental'). Radanovic *et al.* reported that the acid form of E-III exhibits only one strong IR band (*c.* 1600 cm⁻¹) corresponding to the coordinated carboxylates [3]. As shown in Fig. 1, however, the present H-1 and H-2 complexes have another IR band at 1700 cm⁻¹, indicating that both complexes have a protonated carboxylate group.

Table 3 shows the absorption data in H_2O and 0.04 M (1 M=1 mol dm⁻³) NaOH solution. The shift to the lower energy with increasing pH indicates that each complex has one water ligand. That is, H-1 and H-2 are geometrical isomers which can be represented as [Cr(Hedtp)(H₂O)] where one of four 3-propionate

Fig. 1. IR spectra for the two $[Cr(Hedtp)(H_2O)]$ complexes: H-1 (lower); H-2 (upper). Asterisked peaks indicate the bands corresponding to the uncoordinated carboxylates (-COOH).

groups is protonated and the edtp ligand acts as a pentadentate Hedtp³⁻. Only one isomer has been obtained for the analogous chromium(III) complexes; *ciseq* for [Cr(Hedta)(H₂O] [4], *trans-eq* for [Cr{(S)-pdtrp}(H₂O)] ((S)-pdtrp=(S)-propane-1,2-diamine-N,N,N'-tri-3-propionate) and [Cr{(S,S)-cydtrp}(H₂O)] ((S,S)-cydtrp=(1S, 2S)-trans-cyclohexane-1,2-diamine-N,N,N'-tri-3-propionate) [5]. Thus, this is the first example of a chromium(III) complex with a pentadentate edta type ligand which has more than one geometrical isomer.

Molecular structure of the H-1 isomer

The molecular structure of $[Cr(Hedtp)(H_2O)] \cdot 5H_2O$ (H-1) is given in Fig. 2. The chromium is coordinated by a pentadentate Hedtp ligand and an aqua molecule, producing an octahedral *cis*-CrN₂O₄ geometry. This isomer has the same *cis-eq* configuration as $[Cr(Hedta)(H_2O)]$ in which one of the 3-propionates at the G (in-plane) ring is dissociated. Bond distances and angles of the chelates are almost the same as the corresponding ones of $(+)-(+)_{589}$ -Li $\Delta(\lambda\lambda)$ -

 $[Cr(edtp)] \cdot 3H_2O$ (E-III) and the related chromium(III) complexes [4-8] as in Tables 4 and 5. The bond distance between the chromium and the nitrogen of the tertiary amine containing the protonated carboxylate group (Cr-N(2)) is lengthened in comparison with the usual Cr-N distances as found in [Cr(Hedta)(H₂O)] [4]. The ethylenic gauche conformations for both two 3-propionato chelates at the R ring are δ when the absolute configuration of the complex is Λ as shown in Fig. 2. These conformations are also described as lel₂ form in which the ethylenic C-C bonds of 3-propionato chelates are parallel to the pseudo C_2 axis bisecting the N-Cr-N angle. The six-membered 3-propionato chelates at the G and R ring take an asymmetric envelope and a skew-boat conformation, respectively. The ethylenediamine backbone takes the usual gauche conformation, while the corresponding one of the diaminetripropionato complexes [5] with trans-eq configuration takes an asymmetric envelope conformation. Accordingly, the conformations of the diamine and 3propionato chelates of the H-1 are almost identical with those of E-III except for one uncoordinated protonated 3-propionate at the G ring.

²H NMR and magnetic circular dichroism (MCD) spectra

The ²H NMR spectra of [Cr(Hedtp)(H₂O)] isomers and related complexes are shown in Fig. 3. The similarity in the spectral patterns of H-1-d and the E-III-d (Fig. 3(a) and (c)) indicates that the structures of these complexes are similar not only in solid state but also in solution. It is noted that the peak at +57 ppm for the E-III-d is shifted to the upfield by about 10 ppm for the H-1-d. This fact indicates that the peak around +50 ppm corresponds to the signal of the 3-propionate group at the G ring in accordance with that proposed for the deuteriated 1,3-propanediamine-N,N'-diacetato-N,N'-di-3-propionato complex ([Cr(1,3-pddda-6d)]⁻) [8]. One sharp peak at +7 ppm is due to the deuteriated 2-methylene of the uncoordinated protonated 3-propionate.

The ²H NMR spectrum of H-2-d is different from that of E-III-d. However, it is almost identical with that of *trans-eq*-[Cr(edtrp-d)(H₂O)] as shown in Fig.

Isomer	Solvent	λ_{\max} (nm)	ϵ (mol ⁻¹ dm ³ cm ⁻¹)	λ _{max} (nm)	ϵ (mol ⁻¹ dm ³ cm ⁻¹)
H-1	a	549.5	121.0	395.5	49.9
	b	579.2	90.2	415.6	49.8
H-2	а	546.0	172.9	402.0	65.3
	b	567.6	125.0	414.2	60.4

TABLE 3. Absorption data of the [Cr(Hedtp)(H₂O)] isomers

^aIn aqueous solution. ^bIn 0.04 M NaOH aqueous solution.

Fig. 2. Molecular structure of complex H-1.

TABLE 4. Bond distances (Å) of cis-eq-[Cr(Hedtp)(H₂O)] \cdot 5H₂O (H-1)

CrO(1)	1.938(5)	Cr-O(3)	1.947(5)
Cr-O(5)	1.950(5)	Cr-O(9)	2.025(5)
Cr-N(1)	2.081(5)	Cr-N(2)	2.147(5)
O(1)-C(3)	1.287(8)	O(2)-C(3)	1.240(9)
O(3)-C(6)	1.268(8)	O(4)-C(6)	1.228(9)
O(5)-C(9)	1.284(8)	O(6)-C(9)	1.225(8)
O(7)-C(12)	1.320(9)	O(8)-C(12)	1.192(9)
N(1)-C(1)	1.502(9)	N(1)-C(4)	1.492(9)
N(1)-C(13)	1.504(9)	N(2)-C(7)	1.503(9)
N(2)-C(10)	1.497(9)	N(2)-C(14)	1.491(9)
C(1)-C(2)	1.51(1)	C(2) - C(3)	1.50(1)
C(4)-C(5)	1.52(1)	C(5)-C(6)	1.51(1)
C(7)–C(8)	1.52(1)	C(8)-C(9)	1.51(1)
C(10)-C(11)	1.52(1)	C(11)-C(12)	1.50(1)
C(13)-C(14)	1.51(1)		

3(b) and (d), except for one signal near +10 ppm assignable to the uncoordinated protonated 3-propionate. Moreover, the MCD spectrum of the H-2 shows the same pattern as that of *trans-eq*-[Cr(*rac*-pdtrp)(H₂O)] and -[Cr(edtrp)(H₂O)] in the spin-forbidden transitions as shown in Fig. 4. From these observations, the geometrical structure of H-2 is assigned to *trans-eq*.

Reaction of the isomers

Though the two Hedtp isomers are stable in basic solution (pH 9-10), they gradually revert to E-III in aqueous (or acidic) solution. These rechelation reactions to E-III were followed by measuring the absorption spectra for H-1 and H-2 successively. As shown in Fig. 5, the spectra of both the complexes were changing with time and finally identified with that of E-III. Two isosbestic points are observed in the spectra of H-1 and the half lifetime of the reaction is about 30 min.

TABLE 5. Bond angles (°) of $cis-eq-[Cr(Hedtp)(H_2O)] \cdot 5H_2O$ (H-1)

O(1)-Cr-O(3)	90.7(2)	O(1)CrO(5)	174.7(2)
O(1)-Cr-O(9)	84.5(2)	O(1)-Cr- $N(1)$	91.3(2)
O(1)-Cr-N(2)	92.1(2)	O(3)CrO(5)	87.4(2)
O(3)-Cr-O(9)	88.9(2)	O(3)CrN(1)	90.0(2)
O(3)-Cr-N(2)	175.8(2)	O(5)-Cr-O(9)	90.5(2)
O(5)-Cr-N(1)	93.6(2)	O(5)-Cr-N(2)	90.1(2)
O(9)-Cr-N(1)	175.6(2)	O(9)-Cr-N(2)	94.5(2)
N(1)-Cr-N(2)	86.7(2)	Cr-O(1)-C(3)	128.9(4)
Cr-O(3)-C(6)	132.5(5)	Cr-O(5)-C(9)	130.6(4)
Cr-N(1)-C(1)	116.0(4)	Cr-N(1)-C(4)	109.1(4)
Cr-N(1)-C(13)	103.7(4)	Cr-N(2)-C(7)	114.9(4)
Cr-N(2)-C(10)	110.5(4)	Cr-N(2)-C(14)	102.0(4)
C(1)-N(1)-C(4)	110.7(5)	C(1)-N(1)-C(13)	107.5(5)
C(4)-N(1)-C(13)	109.5(5)	C(7)-N(2)-C(10)	109.0(5)
C(7)-N(2)-C(14)	109.3(5)	C(10)-N(2)-C(14)	111.1(5)
O(1)-C(3)-O(2)	121.3(6)	O(3)-C(6)-O(4)	120.5(7)
O(5)-C(9)-O(6)	121.9(6)	O(7)-C(12)-O(8)	124.1(7)
O(1)-C(3)-C(2)	119.4(6)	O(3)-C(6)-C(5)	121.0(6)
O(5)-C(9)-C(8)	117.2(6)	O(7)-C(12)-C(11)	111.0(6)
O(2)-C(3)-C(2)	119.4(6)	O(4)-C(6)-C(5)	118.4(6)
O(6)-C(9)-C(8)	120.9(6)	O(8)-C(12)-C(11)	124.9(7)
C(1)-C(2)-C(3)	114.1(6)	C(4)-C(5)-C(6)	118.7(6)
C(7)-C(8)-C(9)	110.0(6)	C(10)-C(11)-C(12)	111.8(6)
N(1)-C(1)-C(2)	118.2(6)	N(1)C(4)C(5)	114.6(6)
N(2)-C(7)-C(8)	113.9(6)	N(2)-C(10)-C(11)	115.7(6)
N(1)-C(13)-C(14)	110.0(6)	N(2)-C(14)-C(13)	109.5(5)

Fig. 3. ²H NMR spectra of $[Cr(Hedtp-d)(H_2O)]$ isomers and related complexes in 0.04 M NaOH solution: (a) H-1-d; (b) H-2-d; (c) E-III-d; (d) $[Cr(edtrp-d)(H_2O)]$.

In the case of H-2, however, there is no isosbestic point in the spectra and the reaction rate is slower than that of the H-1 isomer; the half lifetime is estimated to be more than 240 min.

Fig. 4. Magnetic circular dichroism (MCD) spectra of the H-1 and H-2: (a) H-1-d (\cdots) ; H-2-d (---); (b) [Cr(edtrp)(H₂O)] (upper); [Cr(*rac*-pdtrp)(H₂O)] (lower).

Fig. 5. Absorption spectral change for the H-1 and H-2 in H_2O at 50 °C: dashed lines, initial spectra; solid lines, spectra at successive times of 10, 20, 30, 40, 50, 60, 80, 100 and 120 min for H-1 and 20, 40, 60, 120, 180 and 240 min for H-2.

The differences reflect the rechelation reaction path from the isomers to E-III as in Scheme 1. The rechelation from the *cis-eq* as well as the *cis-polar* isomer to E-III may occur easily by interchanging of one uncoordinated

Scheme 1.

3-propionate and the aqua ligand. On the other hand, the reaction from the *trans-eq* isomer to E-III requires interchange among two 3-propionates and the aqua ligand, even in the shortest pathway through the *cispolar* intermediate as in Scheme 1. Thus, the complicated spectral change observed during the reaction for H-2 supports the assignment of H-2 to the *trans-eq* configuration.

From the fact that both two isomers revert to E-III completely, H-1 and H-2 are found to be much more unstable than E-III in aqueous (or acidic) solution. This may be the reason why the Hedtp complexes could not be found in the acidic solution of E-III in contrast to the case of $[Cr(Hedta)(H_2O)]$ type complexes [2].

Supplementary material

Tables of thermal parameters, H-atom coordinates, torsion angles, and observed and calculated structure factors can be obtained from the authors on request.

References

- 1 N. Sakagami, M. Hayashi and S. Kaizaki, J. Chem. Soc., Dalton Trans., (1992) 285.
- 2 (a) W. D. Wheeler and J. I. Legg, Inorg. Chem., 24 (1985) 1292; (b) H. Ogino and M. Shimura, Adv. Inorg. Bioinorg. Mech., 4 (1986) 107; (c) S. Kaizaki and H. Mizu-uchi, Inorg. Chem., 25 (1986) 2732.
- 3 D. J. Radanović, M. I. Djuran, M. M. Djorović and B. E. Douglas, *Inorg. Chim. Acta, 146* (1988) 199.
- 4 L. E. Gerdom, N. A. Baenziger and H. M. Goff, *Inorg. Chem.*, 20 (1981) 1606.
- 5 N. Sakagami and S. Kaizaki, J. Chem. Soc., Dalton Trans., (1992) 291.
- 6 M. Parvez, C. Maricondi, D. J. Radanović, M. I. Djuran and B. E. Douglas, *Inorg. Chim. Acta, 182* (1991) 177.
- 7 F. T. Helm, W. H. Watson, D. J. Radanović and B. E. Douglas, *Inorg. Chem.*, 16 (1977) 2351.
- 8 S. Kaizaki, M. Byakuno, M. Hayashi, J. I. Legg, K. Umakoshi and S. Ooi, *Inorg. Chem.*, 26 (1987) 2395.