Ligand behaviour by a bis-pyridazinecarboxamide nickel(I1) complex towards nickel(II) β -diketonates. X-ray crystal structure of $[Ni(bpdpn)Ni(hfacac)₂] \cdot CCl₄ (H₂bpdpn = N, N'-bis(3'-n))$ pyridazinecarboxamide)-1,3-propane; Hhfacac = hexafluoroacetylacetone)

Md. Abed Ali Miah, David J. Phillips* and A. David Rae* *School of Chemistry, University of New South Wales, Kensington, NSW 2033 (Australia)*

(Received March 10, 1992; revised June 2, 1992)

Abstract

The X-ray structure determination is reported for the complex $[Ni(bpdpn)Ni(hfacac)_2]$ ⁻CCl₄ $(H_2bpdpn=N,N'-1)$ bis(3'-pyridazinecarboxamide)-1,3-propane, Hhfacac = hexafluoroacetylacetone. The complex is monoclinic, P2/c, $a = 22.147(12)$, $b = 10.611(2)$, $c = 32.061(18)$ Å, $\beta = 105.50(3)$ °. The deprotonated bis-pyridazinecarboxamide complex $Ni(bpdpn)$ acts as an N,N donor, via the 1-pyridazine nitrogens, to the Ni(hfacac)₂ species, resulting in cis-N₂O₄ coordination to the *β*-diketonate species. The magnetic properties of the complex $(\mu_{\text{eff}} = 3.22 \text{ BM } (304 \text{ K}), 3.19 \text{ m})$ **BM (89 K)) are consistent with the Ni(bpdpn) entity being diamagnetic, as in the parent complex, and the Ni(hfacac), species being paramagnetic. Magnetic and electronic spectral properties indicate that analogous complexes involving the p-diketonate ligands trifluoroacetylacetonate and benzoylacetonate have structures similar** to that of $[Ni(bpdpn)Ni(hfacac)_2] \cdot CCl_4$.

Introduction

There is considerable interest in using metal complexes as ligands in order to produce ligand-bridged complexes [l-4]. A well-known system involves Schiff base complexes such as M(salen) **(I).** Adducts of the type $M(salen)MCl_2 \cdot x(H_2O), \{M(salen)\} M(ClO_4)_2$. $x(H_2O)$ and M(salen)M(hfacac)₂ (Hhfacac = hexafluoroacetylacetone) have been obtained. The M(salen) and analogous complexes act as 0,0-ligands thereby producing oxygen-bridged di- and trinuclear complexes which are often antiferromagnetic [1-4].

As part of an investigation of 3-substituted pyridazine ligands [5] we have developed a new system in which metal bis-pyridazinecarboxamides such as $Ni(bpdpn)$ (II) act as ligands towards metal β -diketonates [6]. We report the X-ray crystal structure of $[Ni(bpdpn)Ni(hfacac)_2]\cdot CCl_4$ $(H_2bpdpn=N,N'-bis(3'-n))$ pyridazinecarboxamide)-1,3-propane; Ni(hfacac)₂= **IIIa)** and the isolation of similar complexes involving the β -diketonates **IIIb** and **IIIc**. Part of this work was reported in a preliminary communication [6]. Pyridazine- and phthalazine-bridged metal complexes are of current interest but previous work has used either the unsubstituted ligands or, much more extensively, a range of disubstituted binucleating ligands [7, 81.

IIIc, $Ni(bac)_2$ $(R = CH_3, R' = Ph)$

^{*}Authors to whom correspondence should be addressed.

Preparations

H,bpdpn

1,3_Propanediamine (0.25 g, 3.3 mmol) was added dropwise to a boiling solution of 3_ethylpyridazinecarboxylate [9] (1.0 g, 6.6 mmol) in absolute ethanol (20 ml). The mixture was heated until the volume was reduced to half. The product which formed overnight was filtered off, washed with absolute ethanol, and dried in a vacuum desiccator. Yield 0.7 g, 75%; m.p. 208 "C. *Anal.* Found: C, 54.5; H, 5.0; N, 29.2. Calc. for $C_{13}H_{14}N_6O_2$: C, 54.5; H, 4.9; N, 29.4%.

Ni (bpdpn) .2H, *0*

A hot solution of nickel(I1) acetate tetrahydrate (0.87 g, 0.49 mmol) in water (30 ml) was added to a boiling solution of the ligand H_2 bpdpn $(1.0 \text{ g}, 0.49 \text{ mmol})$ in ethanol (70 ml). Triethylamine (0.8 g) in ethanol (10 ml) was added dropwise to the boiling mixture. Heating was continued until the volume was reduced to half. Orange needle-like crystals formed after 2 days. These were washed with water and ethanol, and air-dried. Yield 0.95 g, 72%.

[Ni(bpdpn)Ni(hfacac),] . *Ccl4*

A hot solution of Ni(hfacac)₂ \cdot 3H₂O [10] (0.70 g, 1.3 mmol) in chloroform (50 ml) was added to a hot solution of Ni(bpdpn) \cdot 2H₂O (0.50 g, 1.3 mmol) in chloroform (80 ml). The mixture was heated until the volume was reduced to half. An equal volume of carbon tetrachloride was added and the mixtute was heated for 15 min. Red-brown crystals were collected after 7 days and air-dried. Yield 1.15 g, 90%.

Other complexes

Other Ni-Ni complexes were prepared by methods similar to that for $[Ni(bpdpn)Ni(hfacac)_2] \cdot CCl_4$, using $Ni(tface)_{2} \cdot 3H_{2}O$ (IIIb) and $Ni(bac)_{2} \cdot H_{2}O$ (IIIc). The complex $[Ni(hface)_2(bipy)]$ (bipy = 2,2'-bipyridine) was prepared by the method of Veidis *et al.* [ll].

Analyses and physical measurements

These were as previously described [12]. Analytical data for metal complexes are given in Table 1.

X -ray crystal structure determination of $[Ni(bpdpn)Ni(hfacac)_2] \cdot CCl_4$

Intensities were collected at 22 "C for 6759 reflections from a crystal of dimensions $0.17 \times 0.16 \times 0.10$ mm with an Enraf-Nonius 4 diffractometer in $\theta/2\theta$ scan mode, using graphite monochromatised molybdenum radiation $(\lambda = 0.7107 \text{ Å})$ and $2\theta_{\text{max}}$ of 40°. Data were corrected for absorption using a $12 \times 12 \times 12$ Gaussian grid $(\mu = 13.7 \text{ cm}^{-1}, A = 0.803 - 0.877)$. A total of 3645 re-

Experimental TABLE 1. Analytical data for metal complexes

Analyses $(\%)$ Compound (Calculated and found)					Colour
	C	н	N	М	
$Ni(bpdpn) \cdot 2H_2O$	41.2	4.2	22.2 15.5		orange
	40.9	4.0	22.0	15.4	
$[Ni(bpdpn)Ni(hfacac)2]\cdot CCl4$	29.7	1.5	8.7	12.1	red-brown
	29.8	1.5	8.7	12.3	
$Ni(bpdpn)Ni(facac)2·2H2O$	37.1	3.3	11.3	15.8	red-brown
	37.2 3.0		11.3	-15.6	
$Ni(bpdpn)Ni(bac)2·1.5H2O$	52.8	4.4	11.2	15.6	red-brown
	52.6	3.9	11.3	15.7	
[Ni(hfacac) ₂ (bipy)]	38.2	-1.6	4.5		grey–green
	38.5	- 1.5	4.8		

TABLE 2. Crystal data for $[Ni(bpdpn)Ni(hfacac)_2]\cdot CCl_4$

flections with $I > 3\sigma(I)$ was deemed to be observed. Crystal data are given in Table 2. The crystal used was carefully selected and was typical of the better crystals.

The structure was determined by phase determination methods (MULTAN 80) [13] and refined using the comprehensive constrained least-squares refinement program RAELS 89 [14]. Restraints to the solution were thought necessary after initial unconstrained refinement gave poor agreement between pseudoequivalent bond lengths and thermal parameters. The structure consists of layers perpendicular to c^* of pseudo *P2/a* symmetry in which only the two-fold axes are true symmetry elements. A true c-glide operation relates these layers in the true spacegroup $P2/c$. Within a layer, molecules designated A and B are related by a pseudo a-glide $\frac{1}{2}+x$, 1.30 - y, z and a pseudoinversion operator $\frac{1}{2} - x$, 1.30 - y, $\frac{1}{2} - z$ corresponding to the true symmetry operation $-x$, y , $\frac{1}{2}-z$ acting on the pseudo *a*-glide operation. To understand the effects of the pseudosymmetry it is easiest to use the pseudoinversion operator at $r=\frac{1}{4}$, 0.65, $\frac{1}{4}$.

Ignoring anomalous dispersion effects the structure factor can be written in the form $F(h) = A(h)A'(h) B(h)B'(h)$ where $A(h) + iB(h)$ is the structure factor of the *P2/a* layer with respect to an origin at the local pseudoinversion centre and **[A'(h)+iB'(h)]/2=**

 $\exp(2\pi i \mathbf{h} \cdot \mathbf{r})$ is the Fourier transform of the location of the pseudoinversion centre. Consequently should the local pseudoinversion centre impose exact equivalence between molecules A and B in the *P2/a* layer then $B(h)$ will be exactly zero. For $B(h)$ to be significant for a particular reflection **h** then **B'(h)** must be large implying that $A'(\mathbf{h})$ will be small. This implies the refinability of differences across the pseudoinversion centre is very much associated with the weak reflection data. The quality of this data was insufficient to prevent refinement problems and consequently constraint techniques were used. The following model was used.

Anisotropic thermal parameters of atoms pseudosymmetrically related by the a-glide were refined under a constraint that imposed the a-glide symmetry exactly. H atoms were constrained to occupy sensible geometric positions and were given the same thermal parameters as the atoms to which they were attached. The pseudoequivalent Ccl, molecules were disordered and were refined as reorientable, relocatable groups with a common refinable tetrahedral geometry (C-Cl $1.692(3)$ Å). Thermal motion was refined using independent TL parametrisations (6 translation and 6 libration parameters per molecule) common to each disordered pair of Ccl, with the libration centered on the central C atom of the major component. Occupancies were refined to values of 0.696(6):0.304 for sites A,A' and 0.812(4):0.188 for sites B,B'.

The C^* -CF₃ fragments had disordered F atoms. Two orientations of the F atoms related to each other by a 180° rotation and of occupancies α and $1 - \alpha$ were refined for each group. The thermal parameters of each group were refined using TL thermal parameters whose libration was centered on the C* atom. Occupancies of 0.74(1):0.26, 0.97(1):0.03, 0.91(1):0.09, 0.73(1):0.27, were obtained for sites A,A' for groups centred on $C^* = C(31)$, $C(32)$, $C(41)$, $C(42)$ and $0.70(1):0.30$, 0.93(1):0.07, 0.78(1):0.21, 0.81(1):0.19 for the corresponding sites B,B'. To allow for variation between C^* -CF₃ fragments, the C atoms were independently refined but slack constraints (restraints) were used to impose 3m symmetry on each C^* -CF₃ fragment by making selected differences in distances and angles approach zero. These extra conditions on the leastsquares refinement are included as extra observations.

Slack constraints were also imposed to make differences in bond lengths approach zero for bonds related by the pseudo a-glide and to maintain the imposed geometry of the 28 H atoms in the asymmetric unit. In this way 685 variables were used for the blocked least-squares matrix but they represented only 480 independent parameters for the 170 atom sites. Final values of $R(F) = 0.067$, $R(F^2) = 0.103$, $R_w(F) = 0.085$ were obtained for the 3645 reflections with $I > 3\sigma(I)$ used in the refinement. Atoms at lesser occupancy sites have been labelled with a prime for the $CCl₄$ molecule and the F atoms in Table 3.

Results and discussion

The complex $Ni(bpdpn) \cdot 2H_2O$ is diamagnetic [6] and is expected to involve planar N_4 ligand coordination, as in **II,** similar to that for analogous bis-pyridinecarboxamide complexes [15, 161. Reaction of Ni- $(bpdpn)$ $2H₂O$ with the β -diketonate Ni(hfacac)₂. $3H₂O$ (IIIa) in CHCl₃/CCl₄ solution yields [Ni(bpdpn)- $Ni(hfacac)₂$. CCl₄. In the X-ray structure of [Ni(bpdpn)- $Ni(hfacac)_2$ \cdot CCl₄ there are two independent but almost identical species (A and B), of which only A is discussed in detail. A perspective diagram [17] is given in Fig. 1. Atomic parameters are listed in Table 3, and selected bond lengths and bond angles are given in Table 4. Each Ni(bpdpn) entity (involving $Ni(1)$) coordinates as a chelating NN-donor, via the 1-pyridazine nitrogens, to a Ni(hfacac)₂ moiety (involving Ni(2)). This produces a pyridazine-bridged dinuclear complex with $cis-N₂O₄$ coordination to $Ni(2)$, and with a lattice $CCL₄$ molecule.

The N_4 -coordination to $Ni(1)$ is planar with a slight tetrahedral distortion (deviations ± 0.008 Å) from the least-squares plane. This plane $(N(1), N(2), N(11))$, $N(21)$) involving Ni(1) makes a dihedral angle of 57.0° with the N_2O_2 plane (N(12), N(22), O(31), O(41)) involving Ni(2). As a consequence, the Ni-N₄-Ni bridging arrangement is quite non-planar. The bridging pyridazine nitrogens $N(11)$, $N(12)$, $N(21)$ and $N(22)$ form a good plane (deviations ± 0.009 Å) with which Ni(1) is fairly co-planar (deviation 0.327 Å), but Ni(2) deviates by 1.084 Å from this N_4 -plane. This contrasts with the approximately planar $M-N_4-M$ and $M-N_2-M$ arrangements frequently found in bridged complexes with disubstituted pyridazines and phthalazines functioning as binucleating ligands [7, 81.

[Ni(bpdpn)Ni(hfacac)₂] \cdot CCl₄ has a μ_{eff} value of 3.22 BM at 304 K almost invariant with temperature (Table 5). This is in keeping with the nickel(I1) atoms, in the bis-pyridazinecarboxamide and diketonate entities, being diamagnetic and paramagnetic, respectively.

Reflectance spectra are given in Table 6. The spectrum of $[Ni(bpdpn)Ni(hfacac)₂] \cdot CCl₄ contains absorption$ commencing at c. $15\,000$ cm⁻¹, reaching maximum absorbance at c. 20 000 cm⁻¹, and extending to higher frequencies. This is typical of diamagnetic nickel(H) $[18]$ and is assigned to the nickel (II) bis-pyridazinecarboxamide entity. Similar absorption is found with the parent complex $Ni(bpdpn) \cdot 2H_2O$.

 $[Ni(bpdpn)Ni(hfacac)₂]\cdot CCl₄ contains, in addition,$ a pronounced absorption band at 10 500 cm⁻¹. The only absorption in this region for the parent

TABLE 3. Atomic parameters for $[Ni(bpdpn)Ni(hfacac)_2] \cdot CCl_4^{a,b}$ TABLE 3. (continued)

TABLE 3. (continued)

	x/a	v/b	zlc	
F(35)A'	0.7439(3)	1.0700(8)	0.1947(2)	
F(36)A'	0.7025(3)	1.0333(5)	0.2456(2)	
F(41)A'	0.6328(4)	0.8298(10)	0.0184(3)	
F(42)A'	0.6783(4)	0.6672(8)	0.0496(3)	
F(43)A'	0.6971(4)	0.8446(12)	0.0800(3)	
F(44)A'	0.4012(6)	0.5785(16)	0.0705(3)	
F(45)A'	0.4545(4)	0.5011(8)	0.0312(4)	
F(46)A'	0.4051(5)	0.6711(9)	0.0130(4)	
F(31)B'	0.9848(8)	0.0153(8)	0.0906(3)	
F(32)B'	1.0253(6)	0.0870(15)	0.0429(4)	
F(33)B'	0.9392(5)	0.1596(10)	0.0486(5)	
F(34)B'	1.1830(4)	0.1014(5)	0.1989(3)	
F(35)B'	1.1973(4)	0.2819(7)	0.2275(2)	
F(36)B'	1.2292(3)	0.2419(10)	0.1725(3)	
F(41)B'	1.1215(7)	0.6992(10)	0.0273(6)	
F(42)B'	1.1288(6)	0.5030(11)	0.0191(4)	
F(43)B'	1.1795(4)	0.5897(20)	0.0771(3)	
F(44)B'	0.8726(4)	0.6608(10)	0.0138(3)	
F(45)B'	0.9244(4)	0.8250(8)	0.0372(4)	
F(46)B'	0.8748(4)	0.7311(11)	0.0758(3)	

^aStandard deviations are given in parentheses. bAtoms at lesser occupancy sites have been labelled with a prime for the $CCl₄$ molecule and the fluorine atoms in Table 3.

Fig. 1. A perspective drawing of the complex [Ni(bpdpn)- $Ni(hfacac)_2$ \cdot CCl₄.

Ni(bpdpn) **.2H,O** complex is some very weak, very broad absorption at c . 11000 cm⁻¹. The pronounced absorption band at 10500 cm^{-1} in [Ni(bpdpn)Ni- $(hfacac)_2$. CCl₄ is, therefore, attributed to the v_1 $({}^{3}T_{2g} \leftarrow {}^{3}A_{2g})$ transition of the paramagnetic Ni(hfacac)₂ species. This band is in the region for an $NiN₂O₄$ chromophore [18] and this is in keeping with NNcoordination by the Ni(bpdpn) entity to the Ni(hfacac)₂

TABLE 4. Selected interatomic distances (A) and angles $(°)$ for $[Ni(bpdpn)Ni(hfacac)₂]\cdot CCl₄^a$

	A	B
$Ni(1)-N(1)$	1.874(6)	1.876(6)
$Ni(1) - N(11)$	1.924(6)	1.926(6)
$Ni(1) - N(2)$	1.839(6)	1.837(6)
$Ni(1) - N(21)$	1.924(6)	1.919(6)
$Ni(2) - O(31)$	2.038(6)	2.039(6)
$Ni(2) - O(32)$	2.020(5)	2.018(5)
$Ni(2) - O(41)$	2.020(6)	2.015(6)
$Ni(2) - O(42)$	2.014(5)	2.014(5)
$Ni(2)-N(12)$	2.069(6)	2.074(6)
$Ni(2) - N(22)$	2.068(6)	2.067(6)
	A	B
$N(1) - Ni(1) - N(11)$	83.5(3)	83.6(3)
$N(1) - Ni(1) - N(2)$	92.1(4)	91.6(4)
$N(1) - Ni(1) - N(21)$	171.5(4)	171.6(4)
$N(11) - Ni(1) - N(2)$	170.8(4)	170.9(4)
$N(11) - Ni(1) - N(21)$	100.0(3)	100.0(3)
$N(2) - Ni(1) - N(21)$	83.4(3)	83.7(3)
$O(31) - Ni(2) - O(32)$	88.5(3)	88.0(3)
$O(31) - Ni(2) - O(41)$	87.8(3)	90.8(3)
$O(31) - Ni(2) - O(42)$	90.6(3)	91.8(3)
$O(31) - Ni(2) - N(12)$	90.6(3)	90.4(3)
$O(31) - Ni(2) - N(22)$	179.7(3)	178.4(3)
$O(32) - Ni(2) - O(41)$	87.2(3)	86.6(3)
$O(32) - Ni(2) - O(42)$	176.9(3)	177.3(3)
$O(32) - Ni(2) - N(12)$	93.0(3)	93.4(3)
$O(32) - Ni(2) - N(22)$	91.3(3)	90.5(3)
$O(41) - Ni(2) - O(42)$	89.8(3)	90.7(3)
$O(41) - Ni(2) - N(12)$	178.3(3)	178.8(3)
$O(41) - Ni(2) - N(22)$	91.9(3)	89.1(3)
$O(42) - Ni(2) - N(12)$	90.0(3)	89.3(3)
$O(42) - Ni(2) - N(22)$	89.6(3)	89.8(3)
$N(12) - Ni(2) - N(22)$	89.7(3)	89.8(3)

"Standard deviations are given in parentheses.

TABLE 5. Magnetic data

Compound	μ_{eff} (BM) ^a	θ (K) ^b	
	304 K	89 K	
$[Ni(bpdpn)Ni(hfacac)2]\cdot CCl4$	3.22	3.19	-3
$Ni(bpdpn)Ni(tfacac)2·2H2O$	3.20	3.15	- 4
$Ni(bpdpn)Ni(bac)2·1.5H2O$	3.22	3.17	- 5

"Calculated per mole of dinuclear complex. 'Corresponds to θ in $\chi'_{\mathbf{M}} = C(T-\theta)^{-1}$.

species, as found in the X-ray structure. For example, $[Ni(hfacac)_2(bipy)]$ $(NiN_2O_4$ chromophore, bipy = 2,2'-bipyridine) has v_1 at 10 200 cm⁻¹ whereas $Ni(hfacac)₂·3H₂O (NiO₆ chromophore)$ has ν_1 at 9100 cm^{-1} (see Table 6). Dinickel complexes involving other β -diketonates are also reported (Tables 5 and 6). Their

"vw, very weak; vb, very broad; sh, shoulder. $\frac{b}{b}$ Strong absorption extends from here over the higher frequency region.

physical properties and assigned structures are similar to those of [Ni(bpdpn)Ni(hfacac)₂] . CCl₄. Further structural studies of the interaction of metal bis-pyridazinecarboxamides with other metal systems are under way, and will be reported in due course.

Supplementary material

All atom and thermal parameters, and all interatomic angles and torsional angles, are available from the authors on request.

Acknowledgements

The award of a maintenance grant (to M.A.A.M.) from the Australian International Development Assistance Bureau is gratefully acknowledged.

- 0. Kahn, Struct. Bonding (Berlin), 68 (1987) 89.
- C. J. Cairns and D. H. Busch, *Coord. Chem. Rev.,* 69 (1986) 1.
- C. J. O'Connor, *Prog. Znorg Chem.,* 29 (1982) 203.
- E. Sinn and C. M. Harris, *Coord. Chem. Rev., 4* (1969) 391.
- 5 (a) E. S. Ardiwinata, D. C. Craig and D. J. Phillips, *Inorg. Chim. Actu, 166* (1989) *233;* (b) D. C. Craig, M. A. A. Miah and D. J. Phillips, *Inorg. Chim. Acta, 147* (1988) 87.
- M. A. A. Miah and D. J. Phillips, Znorg *Chim. ACM, 165* (1989) *23.*
- (a) M. Inoue and M. Kubo, *Coord. Chem. Rev., 21 (1976)* 1; (b) P. J. Steel, *Coord. Chem. Rev., 106* (1990) *227.*
- 8 (a) J. E. Andrew and A. B. Blake, *J. Chem. Soc. A*, (1969) *1408;* (b) S. K. Mandal, L. K. Thompson, E. J. Gabe, J-P. Charland and F. L. Lee, *Inorg. Chem., 27* (1988) 855; (c) A. Tiripicchio, M. T. Camellini, F. Neve and M. Ghedini, J. *Chem. Sot., Dalton Trans.,* (1990) 1651.
- \mathbf{a} W. J. Leanza, H. J. Becker and E. F. Rogers, *J. Am. Chem. Sot., 7.5* (1953) *4086.*
- 10 F. A. Cotton and R. H. Holm, J. *Am. Chem. Sot., 82 (1960) 2979.*
- 11 M. V. Veidis, G. H. Schreiber, T. E. Cough and G. J. Palenik, _Z. Am. *Chem. Sot., 91 (1969) 1859.*
- 12 A. E. Landers and D. J. Phillips, Znorg. *Chim. Acta, 51* (1981) 109.
- 13 P. Main, *MULTAN SO,* University of York, UK, 1980.
- 14 A. D. Rae, *RAELS 89,* a comprehensive constrained leastsquares refinement program, University of New South Wales, 1989.
- 15 F. S. Stephens and R. S. Vagg, Znorg. *Chim. Actu, 90 (1984) 17.*
- 16 F. S. Stephens and R. S. Vagg, *Znorg. Chim. Actu, 57* (1982) 9.
- 17 C. K. Johnson, *OPTEP-H*, Oak Ridge National Laboratory TN, 1976.
- 18 A. B. P. Lever, *Inorganic Electronic Spectroscopy,* Elsevier, Amsterdam, 2nd edn., 1984.