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Abstract 

The kinetics of the dithionite reduction of the [3Fe-4S]+ form of aconitase has been studied at 25 “C in 85 
mM HEPES, pH 7.4, Z=O.lOO M (NaCl). The half-order dependence on [S,O,‘-] indicates that the SO,‘- 
radical is the effective reducing agent. Saturation kinetic behaviour is observed which can be rationalised in 
terms of a mechanism involving association of SO*’ - and enzyme (K=2.64X lo6 M-‘) prior to reduction of the 
[3Fe-4S]+ cluster (k=0.44 s-l). Alternative mechanisms are considered. No reduction of the [3Fe--4S]+ cluster 
is observed with other sulfur-containing reducing agents including dithiothreitol (DTT), SO,‘-, S203’- and L- 

cysteine. Implications of these various findings are considered. 

Introduction 

Aconitase [citrate-isocitrate hydrolyase EC 4.2.1.31, 
the second enzyme in the Krebs cycle, catalyses the 
interconversion of citrate and isocitrate via the allylic 
intermediate cis-aconitate. Though, aconitase was iden- 
tified by Martius in 1937 [l], it was found to contain 
an Fe/S active site only as recently as 1972 [2]. The 
enzyme is unusual in that the Fe-S cluster catalyses 
an isomerisation process and is not involved in electron 
transfer. Present knowledge on aconitase is largely 
attributable to the work of Beinert and co-workers 
during the last decade [3-51. 

Crystal structures of both the active and inactive 
forms of pig heart aconitase have been published [6, 
71. According to these structures the catalytically active 
form of aconitase contains a single [4FeqS]” cuboidal 
cluster in a molecule of 755 amino acids (jV= 80 000). 
The cluster is located in a pocket close to the centre 
of the molecule [6]. The inactive enzyme contains a 
[3Fe--4S] + centre which has an incomplete cuboidal 
geometry. The Fe/S cluster in aconitase is attached to 
the protein via three Fe-SR bonds, where RS- rep- 
resents a cysteinate residue. The fourth Fe atom of 
the active form, generally designated as Fe,, is attached 
to H,O or OH, Fig. 1. When aerobically isolated, 
aconitase is catalytically inactive. The [3Fe-4S]’ cluster 
of the inactive enzyme can be activated in two distinct 
chemical steps, reduction of the [3Fe--4S]’ cluster 
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Fig. 1. The Fe-S clusters of inactive and active forms of aconitase, 
X=HzO, OH, Fe, of the active form is lost upon oxidative 
inactivation of the enzyme. 

followed by incorporation of Fe’+, eqns. (1) and (2) 
[8, 91. 

[3FeAS] + + Reductant ---+ [3Fe-4Sl” (I) 

[3Fe-4Sl” + Fe’+ --+ [4Fe-4S]*’ (2) 

Interestingly, it is also possible to activate the enzyme 
with a reducing agent only [8]. In such cases the Fe 
is supplied by decomposition of some of the existing 
incomplete Fe-S clusters. 

Though reduction of the [3FAS]+ cluster is a pre- 
requisite for activation of the enzyme, little is known 
about the process itself. In this paper we describe the 
kinetic behaviour of the reduction step using S,O,*- 
as reducing agent. The study was carried out at phys- 
iological pH 7.4 (85 mM HEPES buffer), constant ionic 
strength, 1=0.100 M (NaCl), and temperature 25 “C. 
Reduction of the enzyme with other sulfur containing 
reagents cysteine, SO?-, S,O,*- and dithiothreitol 
(DJT), was also explored. The work has been referred 
to in a communication on aconitase studies [lo]. 
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Experimental 

Protein 
Aconitase was isolated from fresh beef hearts using 

a modified form of existing procedures [S, 11-131. Air- 
free solutions of aconitase were obtained either by 
dialysis or by Amicon diafiltration using air-free buffer 
solutions, 85 mM HEPES, pH 7.4. Reagent solutions 
were also made up in air-free HEPES buffer in a 
Miller-Howe glove box with 0, < 5 ppm. Ionic strength 
of both the protein and reagent solutions were adjusted 
to 0.100 M with NaCl. For each run a fresh solution 
of s,o‘$- was prepared and standardised spectropho- 
tometrically against [Fe(CN),13-, E= 1010 M-’ cm-l 
at 420 nm [14]. In order to avoid incorporation of any 
free Fe’+ into [3Fe-4Sl”, a 20-fold excess of the disodium 
dihydrogen salt of N,hr,hr’,N’-ethylenediaminetetra- 
acetate (edta) over the enzyme was added to enzyme 
solutions. 

Other reagents 
The compounds N-2[hydroxyethyl]piprazine-N-[2- 

ethanesulfonic acid] (HEPES; Sigma), r_-cysteine hy- 
drochloride (Sigma), sodium dithionite (Na2S204; 
Fluka), DL-dithiothreitol (DTT; Sigma), sodium sulfite 
(Na,SO,; BDH) and sodium thiosulfate (Na,S,O,; 
BDH), NaCl and NaClO, (both Analar BDH) were 
used as supplied. 

Physical measurements 
UV-Vis spectra were recorded on a Perkin-Elmer 

Lambda 9 UV-VIS spectrometer. Reaction kinetics 
were monitored on a Dionex D-110 stopped-flow spec- 
trophotometer by following the decay of the protein 
absorbance at 440 nm, Fig. 2. Data were collected and 
analysed on an IBM PC/AT-X computer using software 
from On-Line Instrument Systems (OLIS), Jefferson, 
CA, USA. All experiments were carried out with 
[S,O,*-] > 10 X [protein]. The protein concentration was 
in the range (1.5-2.5) X 10e5 M. A detailed stopped- 
flow kinetic study of the reaction of aconitase with 
dithionite was carried out. However no reaction was 
observed over periods of _ 1 h with SO,‘-, S203’-, 
cysteine and DlT as reductant, with concentration of 
aconitase <50X [Reductant]. Studies were at 25 “C, 
pH 7.4 (85 mM HEPES buffer) and Z= 0.100 M (NaCl) 
under anaerobic conditions. 

Results 

First-order rate constant kobs for the S,O,‘- reduction 
of the aconitase active site [3Fe-4SlC to [3Fe-4Sl” are 
listed in Table 1. The variation observed in Fig. 3(a) 
corresponds to saturation kinetics. Thus a plot of [kobs]-l 

O33 600 
X/nm 

Fig. 2. UV-Vis spectra of [3FeAS]‘+ aconitase (top trace) and 
[3Fe-4Sl” aconitase (bottom trace) in 85 mM HEPES, pH 7.4, 
I=O.l M (NaCl). 

versus [S,0,2-]-‘n, Fig. 3(b), gives a linear plot with 
a positive intercept. The rate law is therefore of the 
empirical form, eqn. (3) 

1 
- =a+ [S,o~-]l,* k obs 

From Fig. 3, a = 2.25( + 0.02) s-l and b = 2.30( + 0.03) X 

lo-’ MIR s-l. Upon rearrangement, eqn. (3) gives eqn. 

(4). 

[S,O,2 - y 

kobs= b+a[S,0,2-J’” (4) 

The dependence of kobs on [S2042-]“2 indicates that 
the radical SO;- rather than dimeric S20J2-, is the 
reducing agent. The mechanism (5)-(7) is consistent 
with these observations. 

s2042- * 2so2’- (5) 

[3Fe--4S]+ + SO;- & [3Fe-G]+, SO;- (6) 

[3FellS]+, SOi- = [3Fe-4S]+ + SOJ2- + 2H+ (7) 

If the prior equilibria (5) and (6) are established rapidly 
then the last stage of reduction (7) is rate determining. 
No effects on kobs were observed on replacing Cl- by 
ClO,-, adjusting Z with SOa2- instead of Cl-, and 
doubling the amount of edta (Table 1). Equations (6) 
and (7) yield the rate-law dependence (8). 

k = m[soi-l 
ObS 1 +K[SO,‘-] (8) 
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TABLE 1. First-order rate constant (25 “C) for the reaction of [3Fe-4S]+ aconitase, (1.5-2.0)X lo-’ M, with dithionite the reactant 
in large excess, pH 7.4 (85 mM HEPES), Z=O.lOO M 

103[Sz0,2-] (M) 0.16 0.21 0.26 0.32 0.38 0.40 0.45 0.61 
kobs (s-l) 0.226 0.264 0.274 0.274 0.287 0.297 0.302 0.311arb 

WW42-1 (MI 0.78 0.83 1.00 1.57 1.65 2.75 3.62 6.39 8.55 
kobr (s-l) 0.324 0.307’ 0.33gd 0.351 0.35T 0.373 0.382 0.397 0.400 

“On replacing Cl- by Clod-, kobs =0.317 s-l. bWith excess of edta 40-fold not 20-fold, kob,=0.320 s-l. 
with S04’- instead of Cl-. dOn replacing Cl- by C104-, kobs= 0.322 s-l. 

‘Ionic strength adjusted 

0 

(a) 

45 

Fig. 3. Plot of (a) kobs against [S204’-] and (b) l/kob, against l/ 
[S,O,‘-]‘n for the reaction of [3FeAS]+ aconitase with SzO,‘- 
at 25 “C, pH 7.4 (85 mM HEPES), Z=O.lOO M. 

Since [SO,‘-] =Kdln [S2042-]1R from eqn. (5), eqn. (9) 
can be derived 

k = KkK~1D[S2042-]1~ 
ObS 1 +KK,‘R[S,0,2-]1R (9) 

which is similar to the empirical eqn. (4). Using the 
literature value of Kd = 1.4 x lop9 M [15], values of the 
equilibrium constant K and the rate constant k are 
(2.62f 0.03) X lo6 M-l and 0.44 k 0.01 s-l, respectively. 

Discussion 

Dithionite is a strong two-electron reductant, eqn. 
(lo), which can react in a single two electron or two 

S,O,‘- + 2H,O = 2HSO,- + 2H’ + 2e- (IO) 

successive one-electron steps. Reduction potentials (ver- 
sus NHE) are - 0.66 and -0.18 V, for the SO;-/ 
HSO,- and S,O,‘-/HSO,- couples at pH 7.0, re- 
spectively [16,17]. The rapid reduction of the [3Fe-4S] + 
cluster of aconitase solely by SO,‘- requires some 
discussion. With the reported value of E”= -0.16 V 
for the [3Fe_4S]‘/[3Fe13S]O couple of aconitase [18], 
and the relatively high concentration of S,O,*- over 
SOZ’-, Kd for eqn. (5) is 1.4~ 10v9 M [15], one might 
have expected a significant contribution from the re- 
action with S&O,‘- as reductant. Two possible reasons 
can be suggested. The first is that the reduction potential 
of the [3FeAS]‘/[3Fe_4S]O couple may.be more negative 
than the reported value of -0.16 V, which is only a 
preliminary value. Furthermore, we were unable to 
reduce the enzyme with DTT (E”= -0.332V) [19a], 
S,O,‘- (E”= 0.08 V for the S,062-/S2032- couple) 
[19b], and cysteine (E” = - 0.21 or -0.33 for the cystine/ 
cysteine couple) [20, 211. The enzyme can be reduced 
by cysteine and DTI in the presence of Fe2+, which 
suggests that the Fe2+ complexes of these reagents are 
sufficiently strong reducing agents for reaction to occur. 
The second related reason is the higher chemical reac- 
tivity of SO;- in terms of E”. We note that mole- 
cules such as citrate and sulfate (see crystal structure 
[6, 71) can access the active site of aconitase, and 
S204*-, although bigger and having a higher charge 
density than SO;-, is unlikely to be excluded on 
these grounds. The half-order dependence on [S204’-] 
supporting the involvement of SO,‘- is unequiv- 
ocal. 

Kinetic studies on dithionite reductions of a number 
of other redox active metalloproteins as well as inorganic 
molecules have been reported [15, 17, 22, 231. In one 
case at least both SOZ’- and S,0,2- were found to 
be reactive [15]. Interestingly, in the majority of studies, 
the SO,- radical is the effective reducing agent. Fer- 
redoxin (spinach) [ 151, nitrite reductase (Wolinella suc- 
c&genes) [23], lumiflavin-3-acetate [15], metmyoglobin 
(horse heart) [17] and a number of its adducts MbX 
[22] (X=H20, OH, imidazole F-, N,-, CNO-, SCN, 
HCO,-, N02-, CN-), as well as dioxygen [15, 241 and 
hydrogen peroxide [24], give rate dependencies for the 
reaction with dithionite (in large excess) of the form 
~,,,=u[S,O,~-]~~. In all cases therefore this supports 
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a mechanism involving SO;- as the kinetically important 
reducing species. 

In the light of these reports, and taking the various 
reduction potentials at their reported values, it is not 
surprising that SO;- reduces [3Fe--4S] + to [3Fe--4S]O. 
However, the way in which it accomplishes this, by 
saturation kinetics, is unexpected. Since replacement 
of Cl- by ClO,- (-0.06 M), and adjustment of the 
ionic strength by S04’- instead of Cl- has no effect 
(Table l), it is unlikely that Cl- is implicated in the 
mechanism. Also important is the observation that 
increasing the level of edta from 20 to 40-fold has no 
effect on kobs. Questions relate to the lifetime of SO;- 
and of the adduct [3Fe_4S], SO;-. An alternative 
would be to invoke association of S,O,‘- with aconitase, 
since a 2-reactant is more likely to interact in this 
way with a positively charged region on aconitase. 
Dissociation of Sz042- within the adduct might then 
be a possibility. The two equilibria (5)-(6) thus become 
interchanged. However this scheme by introducing eqn. 
(11) will affect the rate law, which will be of a less simple 

[3Fe++, S,O,‘- e 

[3Fe-4S]‘, SO,‘- +SO;- (11) 

form. A further proposal that SO;- reduces a site X 
(not specified) on the protein in an equilibrium process 
could also explain the saturation kinetic behaviour. For 
a large enzyme molecule such as aconitase, it is difficult 
to comment further on this possibility. It should also 
be mentioned that saturation behaviour has been ob- 
served for the dithionite reductions of the metmyoglobin 
adducts Mb’X (X=N,-, CNO-, NOz-, HCO,-) [22] 
and nitrite reductase [23, 251. In the case of Mb+X, 
the behaviour is rationalised in terms of the equilibrium 
Mb’X + Mb’ +X which is equivalent to eqn. (6), while 
in the case of nitrite reductase a redox equilibrium has 
been proposed. 
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