Template Synthesis of the Coordinated Triphosphorus Ligands $(Ph_2PCH_2CRR'O)_2PPh$, R or R' = H or CH₃

ANDREW W. G. PLATT and PAUL G. PRINGLE* Department of Chemistry, University of Warwick, Coventry CV4 7AL (U.K.) (Received September 22, 1988)

Abstract

The new tridentate ligands $(Ph_2PCH_2CRR'_2O)_2PPh$ (R or R' = H or CH₃) can be made using Ni(II), Pd(II) or Pt(II) as a template. Hence treatment of $[MX_2-(Ph_2PCH_2CRR'_2OH)_2]$ (R or R' = H or CH₃; X = Cl, M = Pt or Pd; X = CN, M = Ni) with PhPCl₂ gives complexes of the type $[MCl(Ph_2PCH_2CRR'OP(Ph)-OCRR'CH_2PPh_2)]Cl$ (M = Pt or Pd) or $[Ni(CN)_2-(Ph_2PCH_2CRR'OP(Ph)OCRR'CH_2PPh_2)]$. The nickel complexes are fluxional on the NMR timescale.

Introduction

The coordination chemistry of multidentate phosphines has been well studied [1] but the chemistry of multidentate phosphinite, phosphonite, phosphite [2] or mixed P-donor ligands remains largely unexplored. This paper describes the synthesis of one class of diphosphine--phosphonite ligand within the coordination sphere of Pt(II), Pd(II) or Ni(II).

Results and Discussion

Our attempts to make ligands of the type $(Ph_2-PCH_2CR_2O)_2PPh$ by the method shown in eqn. (1) were unsuccessful, giving many uncharacterised products. However treatment of either *cis* or *trans*-platinum complexes 1a [3] with PhPCl₂ gave, after spontaneous elimination of HCl, the desired salt 2a in good yield. This reaction (eqn. (2)) has been extended to the related platinum complexes 1b, c [4] and the palladium complexes 1d-f [5]. The products 2a-f have been characterised by a combination of

 $PhPCl_2 + 2Ph_2PCH_2CMe_2OH \longrightarrow$

$$PhP(OCMe_2CH_2PPh_2)_2$$
 (1)

0020-1693/89/\$3.50

CI-(2)м CI PPh₂ R 1a M = Pt $\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e}$ 2a M = Pt $\mathbf{R} \approx \mathbf{R}' = \mathbf{M}\mathbf{e}$ 1a M = Pt $\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e}$ 2a M = Pt $\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e}$ $\mathbf{R} \approx \mathbf{R}' = \mathbf{H}$ 1c M = Pt $\mathbf{R} = \mathbf{R}' = \mathbf{H}$ 2c M = Pt $\mathbf{R} \approx \mathbf{R}' = \mathbf{M}\mathbf{e}$ $\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e}$ 2d M = Pd1d M = PdR = Me, R' = H2e M = PdR = Me, R' = H1e M = Pd2f M = Pd1f M = Pd $\mathbf{R} = \mathbf{R}' = \mathbf{H}$ $\mathbf{R} = \mathbf{R}' = \mathbf{H}$

PhPCl₂

PPh₂

[MCl₂(Ph₂PCH₂CRR'OH)₂]

TABLE 1. Elemental analysis^a and conductivity data^b

	С	Н	Cl	۸b
2a	49.35 (49.35)	4.45 (4.90)	7.55 (7.65)	80
2ь	48.25 (48.25)	4.25 (4.60)		115
2c	47.45 (47.05)	3.90 (4.30)	8.25 (8.15)	51
2d	54.20 (54.60)	5.15 (5.40)	8.50 (7.70)	92
2e	53.65 (53.55)	4.75 (5.10)		
2f	51.95 (52.30)	4.35 (4.75)		

^aAll the compounds are dihydrates. Calculated values in parentheses. ^bMeasured in acetone as 10^{-3} M solutions; units of cm² Ω^{-1} mol⁻¹.

elemental analysis, solution conductivity measurements, IR and particularly ${}^{31}P{}^{1}H$ NMR spectroscopy (see Tables 1 and 2). For example, complex 1a has a conductivity typical of a 1:1 electrolyte and a single ν (Pt-Cl) band at 315 cm⁻¹. The ${}^{31}P{}^{1}H$ NMR spectrum of 2a consists of a doublet in the normal

© Elsevier Sequoia/Printed in Switzerland

^{*}Present address: School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

TABLE 2. ³¹P {¹H} NMR^a and IR^b data

	δ(P _A)	$^{1}J(PtP_{A})$	$\delta(\mathbf{P}_{\mathbf{X}})$	¹ J(PtP _X)	$^{2}J(\mathbf{P_{A}P_{X}})$	IR bands
2a	1.7	2260	77.2	3861	26	315
2b	3.8	2243	92.4	4036	25	315
2b'	10.9	2340	88.7	4001	24	
2b"	9.5°, d	2247	94.9	4031	28	
	4.8	2285			28	
2c	4.2	2271	145.7	4016	26	320
2 d	-0.9		110.1		25	320
2e	12.9		119.6		18	305
2e′	2.0		129.6		20	
2e″	12.4 ^{c, e}		124.0		22	
	2.8		-		17	
2f	6.1		121.7		18	315
5	-17.5 ^f		147.9		79	2315 ^g

^aAll spectra measured in CDCl₃ at 28 °C and 40.25 MHz unless stated otherwise. Chemical shifts are in ppm (±0.1) to high frequency of external 85% H₃PO₄ and coupling constants are in Hz (±3). P_A are the phosphines and P_X is the phosphonite within a complex. ^bCsCl discs. The bands are ν (MCl) unless stated otherwise. ^cContains inequivalent phosphine groups (see structures 2b and 2c) and hence an ABX pattern observed. ^{d 2}J(P_AP_B) 360 Hz. ^{e 2}J(P_AP_B) 394 Hz. ^fAt -40 °C. ^g ν (CN).

Fig. 1. ³¹P{¹H} NMR spectra of: (a) the product of 3 + PhPCl₂ and assigned structure 4; (b) the product of 4 + NEt₃ and assigned structure 5 at +28 °C; (c) 5 at -60 °C; the signals in the range 0 to +50 ppm are unidentified impurities.

phosphine region and a triplet at high frequency assigned to the phosphonite phosphorus; the small ${}^{2}J(PP)$ is consistent with the coupled phosphorus nuclei being mutually *cis* and the ${}^{1}J(PtP)$ values are consistent with the phosphine phosphorus

The three diastereoisomers (i) - (iii) of 2b (M = Pt) and 2e (M = Pd)

nuclei being *trans* to each other (see Table 1). The ${}^{31}P{}^{1}H$ NMR spectra of the complexes 2b and 2e show the presence of three species which are assigned to the diastereoisomeric structures shown.

The nickel cyanide complex 3 reacts with PhPCl₂ to give a deep red solution, the ³¹P{¹H} NMR spectrum (at +28 °C) of which shows a sharp doublet at 3.3 and a sharp triplet at 123.9 ppm with ²J(PP) 93 Hz; this species is tentatively assigned the five-coordinate structure 4 (eqn. (3)). Treatment of 4

with triethylamine gives a yellow solution containing a complex whose ${}^{31}P{}^{1}H$ NMR spectrum at +28 °C is broad but at -40 °C is clearly a sharp doublet and triplet (Fig. 1). This yellow species has been isolated and is assigned structure 5 on the basis of its nonconductivity in acetone solution, infrared and ${}^{31}P{}^{1}H$ NMR spectroscopy (see Tables 1 and 2). The fluxionality of 5 may be due to interconversion of four- and five-coordinate species e.g. by reversible dissociation of one of the P atoms from the nickel (see Scheme 1).

Experimental

All operations were carried out under a dry nitrogen atmosphere although the products were not air sensitive once isolated. Compounds 1a-e were made as previously described [3-5].

Preparation of

[$ClPt(Ph_2PCH_2CMe_2OP(Ph)OCMe_2CH_2PPh_2)$]Cl (2a) A solution of PhPCl₂ (28 mg, 0.16 mmol) in CDCl₃ (0.5 cm³) was added dropwise to a solution of trans-[PtCl₂(Ph_2PCH_2CMe_2OH)₂] (1a) (205 mg, 0.25 mmol) in CDCl₃ (1.0 cm³) over 5 min. The reaction was complete upon mixing, as shown by ³¹P{¹H} NMR spectroscopy. The solvent was removed at reduced pressure and the crude product recrystallised from acetone/diethyl ether to give the white solid product (150 mg, 60%). The following were made similarly in the yields indicated: 2b (62%), 2c (55%), 2d (92%), 2e (51%), 2f (55%).

Preparation of trans- $[Ni(CN)_2(Ph_2PCH_2CMe_2OH)_2]$ · $H_2O(3)$

A suspension of Ni(CN)₂·4H₂O (155 mg, 0.85 mmol) and Ph₂PCH₂CMe₂OH (790 mg, 3.1 mmol) in ethanol (25 cm³) was heated to reflux for 16 h. The mixture was then filtered and the filtrate reduced to dryness to give a yellow oil. This oil was dissolved in CHCl₃ (5 cm³), cooled to 0 °C and then diethyl ether was added to precipitate the product as a yellow powder (340 mg, 62%). *Anal.* Found: C, 63.05; H, 6.20; N, 4.45. Calc. for C₃₄H₄₀N₂NiO₃: C, 63.25; H, 6.15; N, 4.31%. Molecular weight (in CHCl₃): 618 (calc. 627).

Preparation of

$[(NC)_2 Ni[Ph_2 PCH_2 CMe_2 OP(Ph)OCMe_2 CH_2 PPh_2)]$ (5)

A solution of 3 (103 mg, 0.16 mmol) in $CDCl_3$ (1.0 cm³) was treated with a solution of PhPCl₂ (31 mg, 0.17 mmol) in $CDCl_3$ (0.5 cm³) to give a red solution. Triethylamine (0.1 cm³) was then added; an exothermic reaction took place and the solution lightened to yellow. The solvent was then removed *in vacuo* and the residue extracted with CHCl₃ (2 X 5 cm³); the resulting solution was then concentrated to 2 cm³ and the yellow product precipitated by the

Scheme 1. A possible mechanism for the fluxionality of complex 5.

addition of light petroleum (boiling point 60-80 °C). Satisfactory elemental analysis results were not obtained: C, 62.6 (65.5); H, 6.0 (5.65); N, 3.55 (3.85).

Acknowledgements

We thank the SERC for financial support and Johnson Matthey PLC for a generous loan of precious metal salts.

References

- 1 C. A. McAuliffe, in Comprehensive Coordination Chemis-
- try, Vol. 2, Pergamon, Oxford/New York, 1987, p. 989.
 2 J. R. Bleeke, A. J. Donaldson and W.-J. Peng, Organometallics, 7 (1988) 33.
- N. W. Alcock, A. W. G. Platt and P. G. Pringle, J. Chem. Soc. Dalton Trans. (1987) 2273.
- Soc., Dalton Trans., (1987) 2273.
 N. W. Alcock, A. W. G. Platt and P. G. Pringle, J. Chem. Soc., Dalton Trans., (1989) 139.
- 5 A. W. G. Platt and P. G. Pringle, J. Chem. Soc., Dalton Trans., (1989), in press, paper 8/565.