Steric Effects in $[(\eta^5-C_5H_4Me)Fe(CO)(L)(SnMe_3)]$ Complexes: a ¹¹⁹Sn NMR Study

LAURENCE CARLTON, GARY PATTRICK and NEIL J. COVILLE

Department of Chemistry, University of the Witwatersrand, Johannesburg, P.O. Wits 2050 (South Africa) (Received October 3, 1988)

Abstract

A correlation between $\delta(^{119}Sn)$ and the Tolman cone angle, θ , for a series of complexes $[(\eta^5 - C_5 H_4 - M_e)Fe(CO)(L)(SnMe_3)]$ (L = CO, P(OMe)_3, PMePh₂, PPh₃, P(CH₂C₆H₅)₃) has been observed.

In recent publications we have reported on the use of ¹H and ¹³C NMR spectroscopy in the detection of ligand orientational effects in complexes of the type $[(\eta^5 \cdot C_5 H_4 R)M(CO)(L)I]$ (R = Me, tBu, etc.; M = Fe, Ru; L = group 15 donor ligand, RNC) [1]. From these studies it has become apparent that the steric size of both L and R can be detected by NMR parameters associated with the cyclopenta-dienyl protons [2].

In extending this work to an investigation of other ligands containing atoms that are NMR active (e.g. Si, Sn etc.) we had occasion to synthesize a series of complexes $[(\eta^5 \cdot C_5 H_4 Me)Fe(CO)(L)SnMe_3]$. The complexes were synthesized by standard procedures starting from $[(\eta^5 \cdot C_5 H_4 Me)Fe(CO)_2 SnMe_3]$ which was prepared from Na $[(\eta^5 \cdot C_5 H_4 Me)Fe(CO)_2]$ [3]* and SnMe₃Cl. Irradiation of $[(\eta^5 \cdot C_5 H_4 Me)Fe(CO)_2]$ [3]* and SnMe₃Cl. Irradiation of $[(\eta^5 \cdot C_5 H_4 Me)Fe(CO)_2 SnMe_3]$ with L (L = P(OMe)₃, PMePh₂, PPh₃, P(CH₂C₆H₅)₃) in benzene gave the required products, typically as air and moisture sensitive oils or solids. The complexes were characterized by IR and NMR (¹H, ³¹P, ¹¹⁹Sn) spectroscopy and pertinent data are reported in Table 1.

As anticipated the influence of the group 15 donor ligand on the ring proton NMR parameters could be detected and a typical spectrum for L = PPh₃ is shown in Fig. 1 (ring methyl decoupled). An orientational preference of the PPh₃ ligand is readily observed with coupling of the PPh₃ with H4, (J(P-H) = 5.17 Hz; Fig. 2). The small separation of $\Delta(H2-H5) = 0.05 \text{ Hz}$ as well as the larger separation $\Delta(H3-H4) = 0.14 \text{ Hz}$ suggests that the bulky SnMe₃ group is also displaced away from the ring methyl group.

Fig. 1. ¹H NMR spectrum of $[(n^5-C_5H_4Me)Fe(CO)(PPh_3)-SnMe_3]$ showing the ring resonances H1-H4 (see Fig. 2 for numbering system). Coupling constants were determined from decoupling experiments: J(P-H5) = 1.8 Hz, J(P-H4) = 5.2 Hz, J(P-H3) = 7.8 Hz and J(P-H2) Hz.

Fig. 2. Possible conformation of the solution structure of $[(\eta^5-C_5H_4Me)Fe(CO)(PPh_3)SnMe_3]$.

More significant is the discovery of a good correlation between $\delta(^{119}Sn)$ and the Tolman cone angle, θ [4] (Fig. 3). This is a remarkable correlation as a steric parameter is seemingly being plotted against an electronic parameter. Attempts to correlate $\delta(^{119}Sn)$ (or other NMR parameters; Table 1) with electronic parameters associated with the ligand L were made. Although it is apparent that the Sn resonance moves upfield as L is varied, no linear correlation between the other parameters such as $\delta(^{1}H)$ and the ring protons is observed.

A consideration of the paramagnetic shielding term, $\sigma^{\mathbf{p}}$, suggests an explanation for our observed result. The paramagnetic shielding term is given by the expression $\sigma^{\mathbf{p}} = -1/\Delta E (Q_{\mathbf{p}} + Q_{\mathbf{d}})$ where ΔE is the average electronic excitation energy and $Q_{\mathbf{p}}$ and $Q_{\mathbf{d}}$ depend on the size of and electron imbalance in the valence p and d orbitals [5]. Tin chemical shifts are usually interpreted with ΔE being a

© Elsevier Sequoia/Printed in Switzerland

^{*}It is to be noted that $[(\eta^5-C_5H_4Me)Fe(CO)_2SnMe_3]$ has been previously reported but no details of the synthesis or spectroscopic properties of the complex were given [3].

L	δ(CO) (cm ⁻¹) ^b	δ(¹ H) (ppm) ^{c,d}		δ(¹¹⁹ Sn)	δ(³¹ P) ^f	$^{2}J(^{119}Sn-H)$	$^{2}J(^{119}\mathrm{Sn}-^{31}\mathrm{P})$	θg
		C5H4Me	SnMe ₃	(ppm) ^e				
со	1985, 1940	1.46	0.47	141.7		47.0		90
P(OMe) ₃	1915	1.69	0.55	119.5		42.0	479.2	107
PMePh ₂	1905	1.64	0.17	100.6	60.5	38.9	376.0	136
PPha	1895 ^h	1.81	0.33	88.9	81.1	39.6	357.3	145
P(CH ₂ Ph) ₃	1910	1.61	0.68	80.5	63.5	37.5	363.8	165

TABLE 1. IR and NMR data for $[(\eta^5-C_5H_4Me)Fe(CO)(L)SnMe_3]$ complexes^a

^aNMR data recorded on a Bruker AC 200 spectrometer. ^bRecorded in hexane. ^cRecorded in C₆D₆ relative to TMS. ^dCyclopentadienyl proton resonances were recorded between 4.5 and 3.5 ppm. ^eRecorded in C₆D₆ relative to SnMe₄ (ext). ^fRecorded in C₆D₆ relative to H₃PO₄ (ext). ^gTolman cone angle, ref. 4. ^hRecorded in benzene.

Fig. 3. Plot of Tolman cone angle θ against δ (¹¹⁹Sn) for the $[(\eta^5-C_5H_4Me)Fe(CO)(L)SnMe_3]$ complexes.

constant and variations in $\delta(^{119}Sn)$ being associated with changes in Q_p and Q_d . However Harris *et al.* [6] have proposed that ΔE may not be constant when Sn is bonded to a transition metal due to the presence of $(d-d)\pi$ bonding. It is thus proposed that as the cone angle of L is increased in $[(\eta^5-C_5H_4Me)Fe(CO)(L)(SnMe_3)]$ the distortion of the ligands from the axis of a regular octahedron becomes larger resulting in reduced $(d-d)\pi$ bonding between Fe and Sn. This would increase ΔE , reduce $\sigma^{\mathbf{p}}$ and cause $\delta(^{119}\text{Sn})$ to move upfield as the size of L increases. Further experiments to verify this proposal are presently underway.

Acknowledgements

We wish to thank the University and the FRD for financial support.

References

- 1 J. du Toit, D. C. Levendis, J. C. A. Boeyens, M. S. Loonat, W. Pickl, L. Carlton and N. J. Coville, *J. Organomet. Chem.*, in press.
- 2 K. du Plooy, C. F. Marais, L. Carlton, R. Hunter, J. C. A. Boeyens and N. J. Coville, *Inorg. Chem.*, submitted for publication.
- 3 R. B. King, Organometallics Syntheses, Vol. 1, Academic Press, New York, 1965; D. Condon, M. E. Deane, F. J. Lalor, N. G. Connelly and A. C. Lewis, J. Chem. Soc., Dalton Trans., (1977) 925.
- 4 C. A. Tolman, Chem. Rev., 77 (1977) 313.
- 5 P. J. Smith and A. P. Tupianiskas, Annu. Rev. NMR Spectrosc., 8 (1978) 292.
- 6 D. H. Harris, M. F. Lappert, J. S. Poland and W. Mc-Farlane, J. Chem. Soc., Dalton Trans., (1975) 311.