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It is well known that main group metal ions with 
an s* electron configuration form a large variety of 
polynuclear coordination compounds [l]. Recently 
it has been suggested that in these compounds a 
weak metal-metal bonding may exist which is 
achieved by sp orbital mixing [2]. In particular, 
calculations on Tl+ clusters were used to support 
this idea. Unfortunately, the metal-metal interaction 
in polynuclear s* complexes has been characterized 
almost only by structural data. However, since s* 
metal ions are generally luminescent [3], absorption 
and emission spectroscopy should be well suited for 
studying the metal-metal interaction in these clusters. 
This expectation is based on a certain analogy between 
the electronic structure of s* and d”’ metal clusters. 
In the ground state of d” clusters a weak metal-metal 
bonding is accomplished by ds (or dp) orbital mixing 
[4]. Many polynuclear d” complexes are luminescent 
[S]. In the ds excited state some tetranuclear clusters 
seem to undergo a considerable contraction by the 
promotion of an electron from an antibonding d to 
a bonding s orbital [6]. As consequence the emission 
undergoes a large red shift with respect to the 
absorption. A similar effect can be anticipated for 
s* clusters. This assumption is supported by an ob- 
servation that dimer formation of Bi3+ ions in solid 
matrices is accompanied by a change of the lumi- 
nescence of the s* ion [7]. For the present study we 
selected the compound [T10CH3]4 since it has a 
simple composition and structure [8]. In addition, 
the Tl+ ion is a strong emitter in solution under 
ambient conditions [3]. 
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The absorption spectrum of (TIOCH3]4 in meth- 
anol* (Fig. 1) displays an intense absorption in the 
UV at Amax= 227 nm (E= 48 500). The emission ap- 
pears at A,,= 640 nm (Fig. 1). It was independent 
of the excited wavelength (&,<320 nm). For com- 
parison the spectra of TlN03 in methanol were also 
measured. The absorption spectrum of Tl+ showed 
a band at A,,= 215 nm (e=8600). Nitrate has a 
much weaker absorption at this wavelength. The 
emission of Tl+ occurred at A,,=360 nm. The 
excitation spectrum agreed rather well with the ab- 
sorption spectrum. 

The electronic spectra of Tl+ in water are well 
known [3]. The absorption maximum at A,,,,,= 214 
nm (e=5600 mol-’ dm3 cm-‘) was assigned to the 
lowest-energy metal-centered s+P transition 
‘So + 3P1. The corresponding 3P1 + ‘So emission ap- 
pears at A,, =368 nm [9]. The electronic spectra 
of Tlf in methanol are thus very similar to those 
of Tl+ in water. Water and methanol as ligands 
have apparently quite the same effect on the elec- 
tronic structure of II+. On the contrary, the spectra 
of [T10CH3],, are rather different. While the ab- 
sorption band of A,, = 227 nm is shifted only slightly 
to longer wavelengths the emission at A,,= 640 nm 
undergoes a huge red shift when compared with Tl+ 
in CH30H. 

The compound [T10CH314 consists of a T&O4 
cubane core which contains a tetrahedral Tie cluster 
[8]. The metal-metal interaction can be explained 
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Fig. 1. Electronic absorption (-) and emission (. . . . -) 
spectra of [TlOCH& in methanol at room temperature; 
1 cm cell. Absorption: 4.93 x lo-’ M. Emission: lo-’ M; 
A,=280 nm; intensity in arbitrary units. 

*Owing to the low solubility of [TlOC&], in methanol 
the compound was first dissolved in benzene. This solution 
was then diluted by methanol (1:lOO for absorption and 
1:lO for emission spectra). 
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by a qualitative MO scheme [lo] (Fig. 2) which 

includes the 6s and 6p valence orbitals of thallium. 

In Td symmetry the s orbitals yield one bonding a, 

and three antibonding t2 MOs. The p orbitals generate 

six bonding (a,, t2, e) and six antibonding (tr, t2) 

MOs. It is assumed that the ligand orbitals of CH90- 
are much more stable and do not change this pattern 

significantly. Since Tl+ has a closed s* subshell the 
la, and ltl orbitals are occupied. The compensating 
effect of the filled bonding and antibonding MOs 
should not yield any metal-metal bonding. However, 
the la, and It, orbitals may be lowered by sp mixing 
with p orbitals of the same symmetry. Accordingly 
the (Tl+), cluster can be stabilized by weak 
metal-metal bonding. The assumption of a rather 
small metal-metal interaction in the ground state 
[ll] is supported by measurements of the Raman 
spectrum [12] and an X-ray structural analysis [S] 
which reveals a relatively long Tl-Tl distance of 3.8 
A. The occurrence of the lowest sp transition of 
[TlOCH& and Tlf in methanol at comparable ener- 
gies is also indicative of a small metal-metal inter- 
action in the ground state. 

However, the impressive energy difference 
AC = 12 150 cm-’ between the emission of [TlOCH& 
and Tl+ in CH30H leads to the conclusion that the 
metal-metal interaction is quite strong in the sp 
excited state of the cluster. The lt2-+2a, transition 
of [TlOCH& is associated with the promotion of 
an antibonding electron to a bonding MO of the 
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Fig. 2. Qualitative MO diagram of the tetrahedral (TIc)4 
moiety. 

(Tl+), moiety which may then undergo a contraction 
in the excited state. The large Stoke’s shift of the 
lt,++2a, sp transition is simply a consequence of 
such a considerable structural rearrangement. 

In conclusion we anticipate that other cluster 
complexes of s2 metal ions may show analogous 
spectroscopic features. 
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