cis-Influence determination of ethylene and benzyl cyanide ligands in the complexes cis- $[Pt(Me_2SO)(C_2H_4)Cl_2]$ and cis- $[Pt(Me_2SO)$ - $(PhCH₂CN)Cl₂]$ on the basis of X-ray structure data. IR and ${}^{1}H$, ${}^{13}\overline{C}$ and ${}^{195}Pt$ NMR characterization of the cis -[Pt(Me₂SO)LCl₂] series

Vadim Yu. Kukushkin*

Department of Chemistry, Leningrad State University, Universitetsky Pr. 2, 198904 Stary Petergof (U.S.S.R.)

Vitalii K. Belsky*, Vadim E. Konovalov

L. Ya. Katpov Physico-Chemical Institute, Obukha St. IO, 103064 Moscow (U.S.S.R.)

Gayana A. Kirakosyao

N.S. *Kumakov Institute of General and Inorganic Chemistry, Academy of Sciences, Leninsky Pr. 31, II 7973 Moscow (U.S.S.R.)*

Leonid V. Konovalov, Anatolii I. Moiseev and Valentina M. Tkachuk

Inorganic Chemistv, Lensovet Leningrad Technological Institute, Zagorodny Pr. 49, Leningrad (U.S.S.R.)

(Received January 15, 1991)

Abstract

Complexes of the cis- $[Pt(Me₂SO)LCl₂]$ series (L=Me₂SO, Me₂S, C₂H₄, MeCN, PhCH₂CN, PhCN, C_5H_5N , 2Me-C₅H₄N and NH₃) were prepared by known methods and characterized by IR and ¹H, ¹³C $\left({}^{1}H\right)$, ¹⁹⁵Pt $\left({}^{1}H\right)$ NMR spectra. Structures of cis- $\left[Pt(Me_2SO)(C_2H_4)Cl_2\right]$ and cis- $\left[Pt(Me_2SO)-{}^{1}H_4\right]$ (PhCH₂CN)Cl₂] were determined by X-ray analysis. cis-[Pt(Me₂SO)(C₂H₄)Cl₂] crystallizes in the or**thorhombic space group** *Pmnb***. The unit cell parameters are** $a = 8.200(1)$ **,** $b = 12.924(3)$ **,** $c = 8.574(1)$ Å, $V=908.7(3)$ Å³, $\rho_{\text{calc}}=2.72$ g cm⁻³, Z = 4. cis-[Pt(Me₂SO)(PhCH₂CN)Cl₂] crystallizes in the monoclinic space group $P2_1/n$. The unit cell parameters are: $a = 12.223(4)$, $b = 16.605(4)$, $c = 6.779(2)$ Å, $\gamma = 91.10(2)$ °, $V = 1375.6(7)$ \AA^3 , $\rho_{\text{calc}} = 2.23$ g cm⁻³, Z = 4. On the basis of the X-ray structure data cis- and *trans*influence of C_2H_4 and PhCH₂CN ligands were determined.

Introduction

The structural trans-influence of ligands in complexes of transition metals has been discussed in many publications (see reviews in refs. 1–3). However, the structural cis-influence is a rare phenomenon and in ref. 4 it was stated that cis -influence is a purely dynamic effect.

Recently the authors have carried out the X-ray structure study of the platinum complex cis- $[Pt(Me₂SO)(MeCN)Cl₂].$ The comparison of the Pt-S bond length in this compound with those of cis- $[Pt(Me₂SO)LCl₂]$ (L=Me₂SO, 2Me-C₅H₄N, NH₃) shows that the Pt-S distance is fairly strongly dependent on the nature of L [5]. In other words the Pt-S bond length is an indicator characteristic of

the cis-influence of ligands. This finding has stimulated our further studies concerning the synthesis and X-ray structure analysis of a series of cis- $[Pt(Me₂SO)LCl₂]$ complexes and determination of mutual ligand influence in compounds of this type.

Single crystals of the earlier known complexes cis- $[Pt(Me_2SO)(C_2H_4)Cl_2]$ [6-8] and cis-[Pt(Me₂SO)- $(PhCH₂CN)Cl₂]$ [9, 10] have been prepared along with their X-ray structure analysis and the cis-influence of ethylene and benzyl cyanide in these compounds has been determined.

Experimental

Materials and apparatus

The complexes cis- $[Pt(Me_2SO)LCl_2]$ $(L= Me_2SO)$ [11], Me₂S [12], MeCN [5, 13, 14], PhCH₂CN and

^{*}Authors to whom correspondence should be addressed.

PhCN [9, 10], C_5H_5N [15], 2Me-C₅H₄N [15], and $NH₃$ [15]) were prepared by the known methods. Elemental analysis was performed at the Chair of Analytical Chemistry at the Leningrad State University. The points of ethylene abstraction and decomposition of the complexes cis- $[Pt(Me_2SO)(C_2H_4) Cl₂$] and cis- $[Pt(Me₂SO)(PhCH₂CN)Cl₂]$ were determined on a Kofler micro hot-stage apparatus. IR spectra were recorded using a Perkin-Elmer model 983G spectrometer in KBr pellets. ${}^{1}H$, ${}^{13}C$ and ${}^{195}Pt$ NMR spectra were recorded at 200.13, 50.324 and 64.386 MHz, respectively, on Bruker model AC-200 $(^{1}H, ^{13}C)$ and MSL-300 (^{195}Pt) spectrometers with $DMF-d₇$ internal lock using 10 mm sample tubes, at an ambient temperature 297 K. TMS and 1 M solutions of $Na₂[PtCl₆]$ in $D₂O$ were used as external chemical shift references. Negative values denote low frequency (high field) shifts.

Table 1 shows the apparatus and conditions under which the X-ray structure analysis was run and Tables 2-5 present atomic parameters and their equivalent isotropic factors, bond lengths and bond angles.

Synthesis of cis-[Pt(Me₂SO)(C₂H₄)Cl₂]

 cis -[Pt(Me₂SO)(C₂H₄)Cl₂] was prepared by the slightly modified method described in refs. 6 and 8. To a solution of $K_2[PtCl_4]$ (1.07 g, 2.58 mmol) in 0.4 M HCl (30 ml) was added dimethyl sulfoxide (0.19 ml, 2.70 mmol) and the mixture was kept 90 "C for 15 min. After cooling it was filtered into a round-bottom flask. The *in situ* obtained solution of $K[Pt(Me₂SO)Cl₃]$ was placed in an ethylene atmosphere. After 24 h rod-like crystals began to be released from the solution. They were collected on a filter over 4 days, washed with 1% HCl (3×10) ml), ethanol $(3 \times 10$ ml) and ether $(3 \times 3$ ml), and dried in air at 20 °C. Yield of cis- $[Pt(Me_2SO)(C_2H_4)Cl_2]$: 0.43 g, 45% based on Pt. On heating in the solid phase at 120–130 °C ethylene abstraction takes place and decomposition of the resulting $[Pt(Me_2SO)(\mu\text{-}Cl)Cl]_2$ occurs at 235 °C. These points are in a good agreement with the published data [7, 14]. Anal. Calc. for $C_4H_{10}Cl_2OPtS$: Cl, 19.1; Pt, 52.4. Found : Cl, 19.0; Pt, 52.5%.

IR spectra (4000-200 cm⁻¹; relative intensity is given in parentheses), cm^{-1} : (i) cis-[Pt(Me₂SO)- $(C_2H_4)Cl_2$: 3465(w), 3014(w), 2911(w), 1634(m, broad), 1411(m), 1400(m), 1321(w), 1241(w), 1148(s), 1096(m), 1022(s), 976(m), 939(w), 918(w), 736(w), 714(w), 688(m), 444(m), 379(m), 340(m), 311(m-w), 225(w), 218(w); (ii) cis-[Pt(Me₂SO)(PhCH₂CN)Cl₂]: 3471(w), 3059(w), 3001(m), 2938(m), 2914(w), 2900(w), 2316(m), 2282(w), 1958(w), 1598(w), 1495(m), 1454(m), 1398(m), 1311(m), 1294(m), 1200(w), 1185(w), 1149(vs), 1096(s), 1031(vs),974(m), 940(w), 923(m), 890(w), 745(s), 729(m), 698(s), 617(w), 491(w), 437(m), 379(m), 354(m), 321(m), 282(w), 246(w).

TABLE 1. Crystal data for cis- $[Pt(Me_2SO)(C_2H_4)Cl_2]$ and cis- $[Pt(Me_2SO)(PhCH_2CN)Cl_2]$

	cis -[Pt(Me ₂ SO)(C ₂ H ₄)Cl ₂]	cis -[Pt(Me ₂ SO)(PhCH ₂ CN)Cl ₂]
Crystal system	orthorhombic	monoclinic
Space group	Pmnb	$P2_1/n$
$a(\AA)$	8.200(1)	12.223(4)
b(A)	12.924(3)	16.605(4)
c(A)	8.574(1)	6.779(2)
γ (°)	90	91.10(2)
$V(A^3)$	908.7(3)	1375.6(7)
Z	4	4
ρ_{calc} (g cm ⁻³)	2.72	2.23
Crystal size (mm)	$0.21 \times 0.11 \times 0.14$	$0.18 \times 0.34 \times 0.09$
Absorption correction	yes	yes
μ (cm ⁻¹)	169.8	112.4
Diffractometer	Nicolet P3	Enraf-Nonius CAD-4
Radiation	λ (Mo K α) = 0.71069 Å	$\lambda(Mo\;K\alpha) = 0.71069\;A$
Filter	β	no
Monochromator	no	graphite
Scan type	$\theta/2\theta$	$\theta/2\theta$
2θ scan limits (°)	50	45
Temperature $(^{\circ}C)$	23	23
No reflections with $I \ge 3\sigma(I)$	721	1649
R	0.029	0.016
$R_{\rm w}$	0.030	0.017
Weighting scheme	$w^{-1} = \sigma^2(F) + 0.00153F^2$	$w^{-1} = \sigma^2(F) + 0.0004F^2$

TABLE 2. Atomic parameters $(\times 10^4)$ and their equivalent isotropic factors $(\hat{A}^2 \times 10^3)$ with e.s.d.s in parentheses for cis -[Pt(Me₂SO)(C₂H₄)Cl₂]

Atom	x	y	z	U
Pt	2500	5573(1)	5212(1)	30(1)
Cl(1)	2500	6014(2)	7828(3)	51(1)
Cl(2)	2500	3847(2)	5897(4)	51(1)
S	2500	7240(2)	4562(3)	37(1)
О	2500	7474(6)	2885(10)	55(3)
C(1)	833(15)	7880(8)	5407(13)	54(3)
C(2)	1653(11)	5123(6)	2917(10)	49(3)

TABLE 3. Atomic parameters $(x 10⁴)$ and their equivalent sotropic factors $(\mathring{A}^2 \times 10^3)$ with e.s.d.s in parentheses for cis -[Pt(Me₂SO)(PhCH₂CN)Cl₂]

Atom	x	у	z	U
Pt	2322(1)	1733(1)	5587(1)	38(1)
Cl(1)	782(1)	2528(1)	5629(2)	56(1)
Cl(2)	1262(1)	589(1)	5627(2)	63(1)
s	3755(1)	937(1)	5538(2)	48(1)
О	3796(3)	350(2)	3944(6)	72(1)
N	3227(4)	2726(3)	5584(5)	41(1)
C(1)	3823(5)	426(3)	7809(8)	68(2)
C(2)	4998(4)	1493(3)	5541(8)	61(2)
C(3)	3766(4)	3292(3)	5617(6)	47(2)
C(4)	4479(5)	4002(3)	5626(7)	61(2)
C(5)	5681(4)	3793(3)	5507(7)	50(2)
C(6)	6240(5)	3897(4)	3795(10)	72(2)
C(7)	7327(6)	3743(5)	3673(13)	93(3)
C(8)	7869(6)	3466(5)	5305(15)	95(3)
C(9)	7321(6)	3344(4)	7039(15)	87(3)
C(10)	6233(5)	3523(3)	7137(10)	75(2)

TABLE 4. Bond lengths (A) and bond angles $(°)$ with e.s.d.s for cis- $[Pt(Me_2SO)(C_2H_4)Cl_2]$

TABLE 5. Bond lengths (A) and bond angles (\degree) with e.s.d.s for cis- $[Pt(Me_2SO)(PhCH_2CN)Cl_2]$

Bond lengths			
$Pt-Cl(1)$	2.319(2)	$Pt-Cl(2)$	2.279(2)
$Pt-S$	2.215(1)	Pt–N	1.968(4)
S-O	1.457(4)	$S-C(1)$	1.761(6)
$S-C(2)$	1.764(5)	$N-C(3)$	1.138(7)
$C(3) - C(4)$	1.453(8)	$C(4) - C(5)$	1.519(8)
$C(5)-C(6)$	1.355(8)	$C(5)-C(10)$	1.374(8)
$C(6)-C(7)$	1.360(9)	$C(7)$ – $C(8)$	1.374(13)
$C(8)$ - $C(9)$	1.366(13)	$C(9)$ - $C(10)$	1.369(9)
Bond angles			
$Cl(1) - Pt - Cl(2)$	91.1(1)	$Cl(1)-Pt-S$	178.0(1)
$Cl(2) - Pt-S$	86.9(1)	$Cl(1)-Pt-N$	88.5(1)
$Cl(2)-Pt-N$	179.3(1)	$S-Pt-N$	93.5(1)
$Pt-S-O$	116.6(2)	$Pt-S-C(1)$	108.6(2)
$O-S-C(1)$	108.9(2)	$Pt-S-C(2)$	111.7(2)
$O-S-C(2)$	108.2(2)	$C(1)$ -S- $C(2)$	101.7(3)
$Pt-N-C(3)$	178.4(4)	$N-C(3)-C(4)$	178.3(5)
$C(3)$ -C(4)-C(5)	112.5(5)	$C(4)$ -C(5)-C(6)	120.3(5)
$C(4)$ – $C(5)$ – $C(10)$	120.9(5)	$C(6)-C(5)-C(10)$	118.8(5)
$C(5)-C(6)-C(7)$	121.3(6)	$C(6)-C(7)-C(8)$	119.6(8)
$C(7)$ - $C(8)$ - $C(9)$	120.3(7)	$C(8)-C(9)-C(10)$	119.0(8)
$C(5)-C(10)-C(9)$	121.1(7)		

Results and discussion

General description of the structures

The complexes cis- $[Pt(Me_2SO)(C_2H_4)Cl_2]$ and cis- $[Pt(Me₂SO)(PhCH₂CN)Cl₂]$ adopt a nearly squareplanar geometry with Me₂SO and L $(L=C_2H_4,$ $PhCH₂CN$) occupying cis-sites (Figs. 1 and 2). In the ethylene complex the $Cl(1)$, $Cl(2)$, Pt, S, O atoms and M (midpoint of $C=C$ bond) lie in a symmetry plane. In the benzyl cyanide complex the atom deviations from the plane passing through Pt, Cl(1), Cl(2), N and S atoms are: 0.003, 0.006, -0.007 , -0.008 and 0.007 Å, respectively. In both complexes the angles around the Pt atoms* are close to 90 and 180".

In both cases the dimethyl sulfoxide molecules are coordinated to the platinum atom via sulfur in agreement with results obtained by analysis of the IR and NMR spectra (see below). The sulfur atoms of $Me₂SO$ ligands in the complexes studied are in an approximate tetrahedral environment. The O-S-C angles $(107.9(4), 107.9(4)$ for the C₂H₄ complex and 108.9(2), $108.2(2)$ ° for the PhCH₂CN complex) and C-S-C angles (102.4(7) for the C₂H₄ complex and 101.7(3)^o for the PhCH₂CN complex) are in agreement with those in the free Me₂SO molecule \sim 107 and 97.4°, respectively [17]. The $S=O$ bond distances (1.469(9) for the C_2H_4 complex and 1.457(4) Å for the

^{*}In cis-[Pt(Me₂SO)(C₂H₄)Cl₂] the S-Pt-M, Cl(1)-Pt-M and $Cl(2)-Pt-M$ angles equal 92.0, 177.8 an 88.3°, respectively.

Fig. 1. View of the structure and atom-labelling scheme for cis -[Pt(Me₂SO)(C₂H₄)Cl₂].

Fig. 2. View of the structure and atom-labelling scheme for cis -[Pt(Me₂SO)(PhCH₂CN)Cl₂].

 $PhCH₂CN$ complex) are consistent with those in other dimethyl sulfoxide Pt(I1) complexes (see Table 7 in ref. 5).

Based on the series of cis -[Pt(Me₂SO)LCI₂] complexes ($L = C₂H₄$, MeCN [5, 18], PhCH₂CN, $C₅H₅N$ [19], 2Me-C₅H₄N [20] and NH₃ [21], it is possible to conclude that there is no regular trend in rotations of **MezSO** ligands relative to the coordination plane or relative to the L ligands. However, in the bissulfoxide complexes of the cis- $[Pt(R^1R^2SO)_2L_2]$ type (in particular, cis -[Pt(R₂SO)₂Cl₂]) sulfoxide ligands are in a way oriented with respect to each other (Fig. 3). Table 6 shows that their relative position is such that the oxygen atom of a sulfoxide ligand is directed towards the sulfur atom of the other ligand in the complex. This suggests a weak intramolecular contact $S(1)...O(2)$ or $S(2)...O(1)^*$. Apparently, the inequivalent character of sulfoxide ligands in solid cis- $[Pt(R^1R^2SO)_2L_2]$ complexes may be attributed to such an interaction. The following relationship holds true for most complexes of the series (Table 6): when the $S(1)...O(2)$ distance is less than the $S(2)...O(1)$ distance

(i) Pt-S(1) bond length is larger than Pt-S(2);

 (ii) Pt-S(1)-O(1) bond angle is less than the $Pt-S(2)-O(2)$ one;

(iii) O(1) atom shows larger displacement from the coordination plane than that of the $O(2)$ atom.

When describing cis-[Pt(Me₂SO)LCl₂] (L = C₂H₄, PhCH₂CN) structures it should also be noted that the Pt–Cl bond lengths (*trans* to S) $(2.307(3)$ Å for $L = C₂H₄$ and 2.319(2) Å for $L = PhCH₂CN$ and Pt-Cl bond lengths (trans to S) in other cis- $[Pt(Me₂SO)LCl₂]$ complexes (L = Me₂SO av. 2.309(4) [22] and 2.316(3) A [23]; MeCN av. 2.316(S) [5] and 2.324(2) Å [18]; C₅H₅N 2.316(4) Å [19]; 2Me-C₅H₄N 2.307(4) Å [20]; NH₃ 2.321(5) Å [21]) do not strongly

Fig. 3. Schematic representation of the structure for complexes of the cis- $[Pt(R^1R^2SO)_2L_2]$ type.

^{*}It is noteworthy that all contacts $S(1)...O(2)$ or $S(2)$ $O(1)$ in complexes of the cis-[Pt($R^1R^2SO_2L_2$] type exceed the average value of normal S...O interatomic contact of 3.08 A [34].

TABLE 6. Some structural data for the complexes with 'cts-Pt(R₂SO)₂' units

Estimated by the authors from the data published
 Spirance O(2)-S(3) shown instead of O(2)-S(1) Deviation of coordination $O(1)(O(2))$ atoms from plane (Å) -0.273 -1.283 0.347 -0.049 0.068 -0.059 -0.257 0.443 -0.009 -0.183 0.055 -1.235 0.613 1.250 0.268 1.090 -0.921 -0.095 1.280 0.061 -0.066 0.002 -1.250 -1.301 Dihedral angle^a 10.88 19.87 10.87 45.57 38.55 5.09 3.35 74.47 $[72.12]$ 3.32 19.64 20.9 12.3 74.21 2.0
 3.4 161.4 0.9 57.2
24.3 9.4 3.5 5.3 2.1 $Pt-S(1)-O(1)$
 $Pt-S(2)-O(2)$ Angles (°) 117.49 113.47 115.49 114.68 112.75 112.62 117.01 118.82 113,93 119.52 114.53 115.93 111.8 117.1 118.5 112.2 110.2 116.4 r18.9 116.6 117.4 116.4 112.1 116.6 TABLE 6. Some structural data for the complexes with 'cis-Pt(R,SO),' units 2.302 2.288 2.303
2.299 \pm Texture $\frac{1}{2}$ and $\frac{1}{2}$ an S(l)-o(l) S(2)-O(2) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ \vec{a} \vec{a} \vec{c} \vec{c} \vec{c} \vec{a} \vec{c} \vec{a} \vec{c} $\vec{c$ 2.474 2.474 2.474 2.474 2.474 1.262 1.474 1.262 1.474 1.262 1.474 1.262 1.474 1.262 1.474 1.474 1.474 1.474 1. \sim ² \approx \mathbb{R} 2.260 \mathbb{R} 2.260 \mathbb{R} 3.426 \mathbb{R} 3.463 \mathbb{R} 3.463 \mathbb{R} 2.24×12.3 2.47×12.3 2.47×12.3 [Pt(Me2S0)2Ph,]b 25 2.325 3.335 1.480 2.043 113.47 45.57 1.090 2.315 2.315 2.315 2.41 \sim 2002 \sim 2002 \sim 27 2.345 1.451 1.451 1.995 1.995 1.451 1.995 1.451 1.995 1.995 1.995 1.451 1.995 1.995 1.451 1.995 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1.451 1 $\frac{2}{3}$ \mathbb{R}^2 2.224 \mathbb{R}^2 2.224 \mathbb{R}^2 2.224 \mathbb{R}^2 2.224 \mathbb{R}^2 3.722 \mathbb{R}^2 3.723 $\begin{array}{ccc} \Box\ \Box\ \Box\ \end{array}$ [PTW] 2.209 2.208 2.208 2.208 2.208 2.051 2.051 2.051 2.051 2.051 2.041 2.051 2.041 2.041 2.041 2.041 2.061 2.
1.454 1.454 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2.041 2. [Pt(MezSon)2En]- 30 2.248 4.633 1.467 2.248 4.633 1.467 2.068 1.467 2.068 1.467 2.068 1.467 2.068 1.467 2.068 1 $\mathcal{L}=\mathcal{$ $\frac{1}{2}$ c 31 $\frac{1}{2}$ c 31 $\frac{1}{2}$.31 $\frac{1}{2}$ 1.470 $\frac{$ $\frac{2}{3}$ [Pt(C&sS0)2Cl,lb 32 2.247 3.701 1.460 2.310 114.53 74.21 - 1.301 2.227 3.089 1.456 2.313 115.93 3.32 - 0.066 $\frac{1}{2}$ $\begin{array}{|c|c|c|c|c|}\n\hline\n2.288 & 2.272 & 2.$ $\frac{1}{2}$ 3.249 3.412 3.412 3.412 3.412 1.482 3.412 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3.412 1.482 3 \mathcal{L}_2 3.147 \mathcal{L}_3 3.147 \mathcal{L}_4 1.473 \mathcal{L}_5 1.473 \mathcal{L}_6 2.147 \mathcal{L}_7 2.147 \mathcal{L}_8 $\fbox{\parbox{1.5cm} {\begin{align} \begin{aligned} &\text{Complex} \\\\ &\text{Pr}(Me_2SO)_2\text{Cl}_2\text{P} \\\\ &\text{Pr}(Me_2SO)_2\text{P} \end{aligned} \end{align} }$ \Box Dination plane and the coordination plane and \Box in the authors from the data published in o

148

depend on the pattern of the L ligand. Apparently, Pt-Cl bond lengths (trans to S) are mainly determined by the trans-influence of dimethyl sulfoxide.

In the molecule of cis -[Pt(Me₂SO)(C₂H₄)Cl₂] ethylene is perpendicular to the coordination plane which is known from other ethylene Pt(I1) complexes characterized by X-ray structure analysis (Table 7). C=C distance is 1.39(2) Å and Pt-M is 2.052(7) Å. These bond lengths are consistent with those of other C_2H_4 -[Pt^{II}] complexes. Pt-Cl bond length *(trans to* C_2H_4) equals 2.314(3) Å which is slightly shorter than the Pt-Cl bond lengths *(trans* to C_2H_4) in $K[Pt(C₂H₄)C₃] \cdot H₂O$, cis- $[Pt(C₂H₄)₂C₁]$ and cis- $[Pt(C₂H₄)(C₇H₁₃)Cl₂]$ (Table 7).

In the complex cis -[Pt(Me₂SO)(PhCH₂CN)Cl₂] as in other $Pt(II)$ organonitrile compounds [5, 45-53] the fragment $Pt-N=$ C-C is linear. $Pt-N-C$ and N-C-C angles are $178.4(4)$ and $178.3(5)$ °, respectively. Pt-N and N=C bond lengths equal 1.968(4) and $1.138(7)$ Å which is in agreement with av. 1.967(15) and av. 1.149(15) Å [5] and also with 1.976(7) and 1.153(11) \AA [18] in cis- $[Pt(Me₂SO)(MeCN)Cl₂].$ The Pt-Cl (trans to N) distance $(2.279(2)$ Å) also in fact does not differ from that in cis -[Pt(Me₂SO)(MeCN)Cl₂] (av. 2.278(2) [5] and $2.282(2)$ Å [18]).

cis-Znf7uence of ethylene and bentyl cyanide in complexes of the cis-[Pt(h4e,SO)LCl,] type

As mentioned above, the Pt-S bond lengths in complexes of the cis- $[Pt(Me₂SO)LCl₂]$ type can be used as indicators of the L ligand cis -influence. Structural studies enabled us to construct a cisinfluence series which according to decreasing Pt-S bond lengths (A) is as follows: Me₂SO $(2.240(9)) > C₂H₄$ $(2.225(3)) \geq MeCN$ (av. 2.222(5)), PhCH₂CN (2.215(1)) > C₅H₅N (2.209(4)) > 2Me- C_5H_4N (2.200(3)) > NH₃ (2.186(4)). The ligands having pronounced π -acceptor properties and fairly strong σ -donors are arranged in the left and right part of the series respectively. The relative position of N-donor ligands (MeCN, C_5H_5N , NH₃) in the cisinfluence series is consistent with that of the Chatt constants series [54] also reflecting the π -acceptor and σ -donor ability of ligands.

IR spectra of complexes of the cis-[Pt(Me₂SO)LCl₂] series

v(S0) and y""(CS0) bands

The bands assigned as ν (SO) of coordinated sulfoxides exhibit high intensity and occur in a relatively narrow spectral range of 1200–900 cm^{-1} for different platinum complexes and different S- and O-coordinated R_2SO (Table 8). By the S-coordination the

 $\nu(SO)$ band is considered to displace into the high frequency range and by the O-coordination, to the low frequency range as compared to the $\nu(SO)$ band in the R₂SO free molecule. As a rule the $v(SO)$ band in complexes of the $[Pt^{II}]$ -S(O)R₂ type fall within the range of 1000–1160 cm⁻¹ [61]; in complexes of the $[Pt^{IV}]$ -S(O)R₂ type, in the range of 1180-1150 cm^{-1} (Table 8) and in complexes of the [Pt^{II}]-OSR₂ type, in the range of 900–1000 cm⁻¹ [61]. The position of the $\nu(SO)$ band often being used for the determination of a coordination mode of the R_2SO molecules, two possibilities of errors occurring are to be taken into account.

First, the $\nu(SO)$ band in the free R₂SO molecules is highly sensitive to spectrum measurement conditions. For example, the frequency of $\nu(SO)$ decreases by about 50 cm^{-1} as Me₂SO passes from the gaseous phase into the liquid phase [61]; the position of the band is also strongly dependent on solvent properties [62]. Naturally, in those cases when $R₂SO$ coordination to metal ions leads to slight changes in $\Delta \nu$ (SO) (see ref 63) a question arises as what the values of $\nu(SO)$ of the R₂SO free molecule can be compared with.

Second, the determination of the $R₂SO$ coordination mode based on the change in $\Delta v(SO)$ is incorrect in the case when a corresponding spectral range is overlapped by other bands.

To reliably identify the sulfoxide coordination mode some additional criterion should be used apart from the $\Delta \nu$ (SO) criterion. In particular, in ref. 64 it is the presence or absence of the γ^{as} (CSO) band in the case of the $Me₂SO$ -containing complexes. The band is present in spectra of the S-coordinated molecules and absent in those of the O-coordinated complexes. The γ^{as} (CSO) falls in the fairly narrow spectral range (370–390 cm⁻¹) and is not strongly dependent on metal ions [64], intermolecular interactions [65] and the type, structure, and charge of the complex (Tables 8, 9). Unfortunately, the vibrations of γ^{as} (CSO) are spectrally more complexly manifested in complexes of the [M]-S(O)R₂ (R \neq Me) type and hence cannot be used for determination of a coordination mode.

v(Pt-S) bands

Medium intensity bands in the $400-500$ cm⁻¹ range in spectra of platinum complexes with S-coordinated sulfoxides usually belong to ν (Pt-S) vibrations (see refs. 61, 63 and loc. cit.). Such high frequencies of $\nu(Pt-S)$ bands in complexes of the [Pt]-S(O)R₂ type as compared to complexes of the [Pt]-SR, type $(320 \pm 20 \text{ cm}^{-1}$ [66]) may be attributed to a shorter Pt-S bond in sulfoxide compounds (Table 9) as compared to thioether ones $(2.26-2.27 \text{ Å } [66-70])$.

149

 60

Ligand	$Pt-S$ (\AA)	$\nu(SO)$ (cm^{-1})	γ^{as} (CSO) (cm^{-1})	$\nu(PtS)^{a}$ (cm^{-1})	$\nu(PtCl)$ (cm ⁻¹)	
					v^{as}	$\nu^{\rm S}$
Me ₂ SO	av. 2.240^b	1155 and 1131	379	430	334	310
Me ₂ S		1143	378	444	333	309
C_2H_4	2.225	1148	380	444	342 and 330	311
MeCN	av. 2.222^b	1147	375	439	358	320
PhCH ₂ CN	2.215	1149	379	437	354	321
PhCN		1145	376	439	356	322
C_5H_5N	2.209	1150 and 1141	378	443	345	318
$2Me-C5H4N$	2.200	1138	376	452 and 438	348	323
NH ₃	2.186	1128	383	443	342	309

TABLE 9. Some bands in IR spectra of the cis-[Pt(Me₂SO)(ligand)Cl₂] series

⁸Such an assignment seems debatable. ^bAverage value for two independent measurements.

TABLE 10. Selected ¹H, ¹³C and ¹⁹⁵Pt NMR parameters for cis-[Pt(Me₂SO)LCI₂] series (DMF-d₇ solutions) along Pt-S bond lengths

Ligand	Pt-S (\AA)	¹ H NMR: δ (ppm) $(^3J(^{195}Pt-{}^{1}H))$ for Me ₂ SO ligands	¹³ C NMR: δ (ppm) $(^{2}J(^{195}Pt-^{13}C))$ for $Me2SO$ ligands	¹⁹⁵ Pt NMR: δ (ppm) $(^1J(^{195}Pt-^{14}N)$
Me ₂ SO	av. 2.240	3.56(23) 3.62(23), acetone-d ₆ [56]	44.29(52)	-3463 -3459 , Me ₂ SO [74]
Me ₂ S		3.45(23) 3.60(23), acetone-d ₆ [12]	4.69(56)	-3528
C_2H_4	2.225	3.55(20) $3.55(20)$, CDCl ₃ [8]	43.85(44)	-3515
MeCN	av. 2.222	3.37(23) 3.49(23), acetone-d ₆ [5]	44.34(59)	$-3007(356\pm10)$
PhCH ₂ CN	2.215	3.37(24)	44.39(56)	$-3007(350\pm20)$
PhCN C_5H_5N	2.209	3.37(26) 3.25(26)	44.39(59) 44.10(59)	$-2994(350 \pm 20)$ $-2867(260 \pm 20)$ -2856 , Me ₂ SO-d ₆ [75]
$2Me-C5H4N$	2.200	3.39(24)	44.43(61)	$-2879(275\pm10)$ -2871 , Me ₂ SO-d ₆ [75]
NH ₃	2.186	3.34(26)	44.19(59)	$-3044(210\pm10)$ -3046 , Me ₂ SO-d ₆ [76]

To a first approximation and disregarded kinematic factors it is natural to look for the ν (Pt-S) bands in the platinum suifoxide compounds in a more high frequency spectral range as compared to that of thioether compounds.

There is also some doubt as to correct assignment of the ν (Pt-S) frequency due to the fact that frequencies of absorption bands of about 440 cm^{-1} in IR spectra of complexes in the cis -[Pt(Me₂SO)LCl₂]

series do not actually change despite changes in the Pt-S bond lengths (Table 9). Table 8 shows that frequencies of absorption bands commonly assigned to ν (Pt–S) vary slightly as the type of Pt(II) complex changes, even on oxidation of Pt(I1) complexes into corresponding Pt(IV) complexes. The latter seems even more strange because the Pt-S bond becomes longer by more than 0.1 Å on oxidation of $[Pt^{II}]$ -S(O)R₂ into $[Pt^{IV}]$ -S(O)R₂ [60]. Apparently,

the identification of the ν (Pt-S) absorption bands in IR spectra of sulfoxide complexes needs to be studied in more detail.

v(Pt-CI) bands

The ν (Pt-Cl) bands exhibit a fairly high intensity and fall in the 350-280 cm^{-1} range [71, 72]. As a rule it is not difficult to identify these bands. As one would expect for cis -[Pt(Me₂SO)LCl₂] compounds there are two bands $\nu^{as}(Pt-CI)$ and $\nu^{s}(Pt-CI)$ in the above spectral range (Table 9). It has been shown in ref. 73 that asymmetry of the $PtCl₂$ fragment along the bond lengths in the main factor responsible for the splitting of $\Delta \nu (Pt-Cl) = \nu^{as} - \nu^s \ge 20$ cm⁻¹. The asymmetry in turn is determined by the mutual influence of ligands and especially by the *trans*influence of ligands. The calculation of the interatomic Pt-Cl distances in the series of cis-

 $J(195_{Pt.}I_{H}) = 24$ Hz

 $[Pt(\text{Me}_2SO)(DH-d_7)Cl_2]$

 $[Pt(Me₂SO)LC1₂]$ complexes based on the $\nu(Pt-Cl)$ frequency analysis [72] gives Pt-Cl interatomic distances close to those obtained using X-ray structure analysis.

NMR spectra of complexes of the cis- [Pt(Me,SO)LCl,] series

Table 10 shows parameters for ${}^{1}H$, ${}^{13}C$ and ${}^{195}Pt$ NMR spectra of the series of cis -[Pt(Me₂SO)LCl₂] complexes in DMF-d₇. In ¹H NMR spectra the signal from methyl groups of the coordinated dimethyl sulfoxide has a satellite structure from 195 Pt- 1 H coupling; it falls about 1 ppm in the low field as compared to that from free Me₂SO. The range of chemical shifts and $3J(^{195}Pt-^{1}H)$ values imply [63] the S-coordination of the dimethyl sulfoxide molecules in all the complexes studied.

In the ${}^{13}C(^{1}H)$ NMR spectra of the cis- $[Pt(Me₂SO)LCl₂]$ compounds the signal of the methyl

 $\frac{8}{195}$ Pt) = -2965 ppm

Fig. 4. ¹⁹⁵Pt NMR spectra at a frequency of 64.386 (b, c) and 43.022 (a) MHz for solutions in DMF-d₇: a) *trans-* $[Pt(Me_2SO)(\mu\text{-}Cl)Cl]_2$ kept at 70 °C for 1 h; b) cis- $[Pt(Me_2SO)(PhCH_2CN)Cl_2]$ for 1 h after dissolution at the ambient temperature; c) cis-[Pt(Me₂SO)(PhCH₂CN)Cl₂] kept in about 20 min after dissolution at the ambient temperature (~25 $^{\circ}$ C).

group carbon of the inner-sphere $Me₂SO$ was recorded in a low field as compared to that of the free ligand; besides ${}^{13}C-{}^{195}Pt$ coupling occurs on the spectra which is characteristic of the S-bound dimethyl sulfoxide molecules [77]. Therefore, in solutions of the cis -[Pt(Me₂SO)LCl₂] complexes in $DMF-d₇$ the S-coordination of Me₂SO molecules takes place as in the solid phase.

Signals in the $^{195}Pt{^1H}$ NMR spectra of the *cis*- $[Pt(Me₂SO)LCl₂]$ complexes appear within the range of chemical shifts from -2867 to 3528 ppm. In the complexes with N-donor ligands the 195 Pt signals exhibit broadening and have a triplet structure (with triplet component intensities ratio 1:l:l) due to the ¹⁹⁵Pt-¹⁴N coupling. The values of $1/(195Pt^{-14}N)$ decrease when hybridization of the N-donor atom of the coordinated ligand changes form sp- to $sp²$ - and then to sp^3 -type.

It is noteworthy that the cis -[Pt(Me₂SO)(RCN)Cl₂] complexes in solutions of dimethyl formamide are subject to solvolysis. For example, in ¹⁹⁵Pt NMR spectra apart from the signal from cis-[Pt(Me,SO)(PhCH,CN)Cl,] (A) signals are registered with chemical shifts -2965 (B) and -2872 (C) (Fig. 4). The intensity of line C increases with exposition of the solution and concurrently the intensity of signal A decreases; the resonance line B has a low intensity under all conditions. Figure 4 shows that signal C is identical to that from the complex $[Pt(Me_2SO)(DMF-d_7)Cl_2]$ ($\delta(^{195}Pt)$ - 2871 ppm, septet, ${}^{3}J({}^{195}Pt-{}^{1}H)$ 24 Hz; $\delta({}^{13}C)$ 45.55 ppm, $2J(^{195}Pt-^{13}C)$ 64 Hz]. The latter results from the dimer-splitting reaction

 $[Pt(Me_2SO)(\mu\text{-}Cl)Cl]_2 + 2DMF\text{-}d_7 \longrightarrow$

$2[Pt(Me₂SO)(DMF-d₇)Cl₂]$

Apparently, signals C and B belong to different geometric isomers of the complex [Pt(Me₂SO)(DMF d_7 Cl₂].

The data listed in Table 10 show that the change of substituents in the ligands of the same type does not strongly affect the 195 Pt chemical shifts. The absence of such spectral changes has been reported earlier for complexes of the $[Pt(PR₃)Cl₃]$ ⁻ type having different PR₃ phosphines [78]. In the ¹⁹⁵Pt NMR spectra of the complexes cis -[Pt(Me₂SO)LCl₂] the ¹⁹⁵Pt chemical shift depends on the type of donor atom; there is no evident correlation between $Pt-S(O)Me₂$ bond distances and values of $195Pt$ chemical shifts. Based on the data obtained by the authors and those by Kerrison and Sadler [74] it is possible to construct a magnetochemical series of the ligands: OH^- < Py, $2Me-Py$ < Cl < MeCN, PhCN, Ph- $CH_2CN < NH_3$; $Br^- < Me_2SO < C_2H_4$, Me_2S .

This series is mainly consistent with that for the Pt(IV) complexes [79].

References

- 1 T. G. Appleton, H. C. Clark and L. E. Manzer, *Coord. Chem. Rev., 10* (1973) 335.
- 2 M. A. Porai-Koshits, *Koord. Khim., 4 (1978) 842.*
- 3 L. ManojloviC-Muir, *IN. Jugoslav. Centra Krirt., 13 (1978) 21.*
- 4 M. L. Tobe, in G. Wilkinson (ed.), *Comprehensive Coordination Chemistry,* Vol. I, Pergamon, New York, 1987, p. 281.
- 5 V. K. Belsky, V. E. Konovalov, V. Yu. Kukushkin and A. I. Moiseev, Inorg. *Chim. Acta, I69 (1990)* 101.
- 6 Yu. N. Kukushkin and I. V. Pakhomova, *Zh. Neorg. I&m., 15 (1970) 1882.*
- 7 *I.* V. Pakhomova, Yu. N. Kukushkin, L. V. Konovalov and V. V. Strukov, *Zh. Neorg. Khim., 29 (1984)* 1000.
- B. H. Boucher and B. Bosnich, *Inorg. Chem., 16 (1977)* 717.
- **V. Yu. Kukushkin, V. M. Tkachuk and B. V. Zhadano** unpublished results.
- 10 V. Yu. Kukushkin, V. K. Belsky, V. E. Konovalov, R. R. Shifrina, A. I. Moiseev and R. A. Vlasova, Inorg *Chim. Acta, I83 (1991) 57.*
- 11 *Yu. N.* Kukushkin, Yu. E. Vyazmensky, L. I. Zorina and Yu. L. Pazukhina, *Zh. Neorg. Khim., I3 (1968) 1595.*
- 12 V. Yu. Kukushkin and E. Yu. Pankova, *Koord. Khim., 15* (1989) 531.
- 13 V. Yu. Kukushkin, E. Yu. Pankova, T. N. Fomina and N. P. Kiseleva, *Koord. Khim., 14* (1988) 1110.
- 14 V. Yu. Kukushkin and A. I. Moiseev, *Koord. Khim., 15* (1989) 419.
- 15 V. Yu. Kukushkin, A. I. Moiseev and E. 0. Sidorov, *Zh. Obshch. Khim., 59 (1989) 1958.*
- 16 *Yu. N.* Kukushkin, Yu. E. Vyazmensky and L. I. Zorina, *Zh. Neorg. Khim., 13 (1968) 3052.*
- 17 R. Thomas, K. Eriks and C. B. Shoemaker, *Acta Ctystallogr., Part I, 21 (1966) 12.*
- 18 F. D. Rochon, P. C. Kong and R. Melanson, Inorg. *Chem., 29 (1990) 1352.*
- 19 V. K. Belsky, V. E. Konovalov and V. Yu. Kukushki *Acta Crystallop-., Sect. C,* accepted for publication,
- 20 R. Melanson and F. D. Rochon, *Acta Crystallogr., Sect. B, 33 (1977) 3571.*
- 21 R. Melanson and F. D. Rochon, *Acta Crystallop., Sect. B, 34 (1978) 941.*
- 22 R. Melanson and F. D. Rochon, Can. *J. Chem., 53 (1975) 2371.*
- 23 R. P. Shibaeva, *Koord. Khim., II (1985) 129.*
- 24 V. K. Belsky and V. F. Konovalov, to be published
- 25 R. Bardi, A. Del Pra, M. Piazzesi and M. Trozzi, *Cryst. Struct. Commun., IO (1981) 301.*
- 26 R. I. Rudii, N. V. Cherkashina, T. S. Khodashova, I. I. Moiseev and M. A. Porai-Koshits, *Koord. Khim., 10* (1984) 280.
- 27 T. S. Khodashova, M. A. Porai-Koshits, R. I. Rudii, N. V. Cherkashina and I. I. Moiseev. *fiord. Khim., 10 (1984) 850.*
- **28** F. D. Rochon, P. C. Kong and R. Melanson, Acfa *Clystallogr., Sect. C, 41 (1985) 1602.*
- **29** L. I. Elding and A. Oskarsson, Inorg. *Chim. Acta, 130 (1987) 209.*
- **30** *G.* Bruno, G. Bombieri, G. Alibrandi, S. Lanza and R. Romeo, Cyst. *Struct. Commun., II* (1982) 1369.
- **31** R. Melanson and F. D. Rochon, *Acta Crystallogr., Sect. C, 43 (1987) 1869.*
- 32 R. Melanson, C. de la Chevrotière and F. D. Rocho *Acta Crystallogr., Sect. C, 41 (1985) 1428.*
- 33 V. K. Belsky and V. E. Konovalov, to be publishe
- **34** Yu. V. Zefirov and P. M. Zorky, *Zh. Strukt. Khim., 17* (1976) 994.
- **35** R. A. Love, T. F. Koetzle, G. J. B. Williams, L. C. Andrews and R. Bau, Inorg. *Chem., 14 (1975) 2653.*
- **36** P. G. Eller, R. R. Ryan and R. 0. Schaeffer, Cryst. *Struct.* Commun., 6 (1977) 163.
- **37** L.-J. Huang and C.-H. Lu, *Kexue Tongbao,* 27 (1982) 925.
- **38** H. Jinling, Z. Zhongyuan, H. Liangren and L. Jiaxi, *Ko Hsueh T'ung Pao, 28 (1983) 628.*
- **39** M. Camalli, F. Caruso and L. Zambonelli, Inorg. *Chim. Acta, 44 (1980) 177.*
- **40** M. A. M. Meester, K. Olie, L. Sint and H. Schenk, *Ctyst. Struct. Commun.,* 4 (1975) 725.
- 41 F. Caruso, R. Spagna and L. Zambonelli, *J. Cyst. Mol. Struct., 8* (1978) 47.
- **42** F. Caruso, R. Spagna and L. Zambonelli, *Inorg. Chim. Acta, 32 (1979) L23.*
- **43** P. R. H. Alderman, P. G. Gwston and J. M. Rowe, *Acta Crystallogr., 13 (1960) 149.*
- **44** D. A. Johnson, W. C. Deese and A. W. Cordes, *Acta Clystallogr., Sect. B, 37 (1981) 2220.*
- **45** V. Yu. Kukushkin, 1.1 A. Krol, Z. A. Starikova and V. M. Tkachuk, *Koord. Khim., 14 (1990) 1406.*
- **46** I. A. Krol, V. Yu. Kukushkin, Z. A. Starikova, V. M. Tkachuk and B. V. Zhadanov, *Zh. Obshch. Khim., 58 (1988) 2625.*
- **47 M.** M. Muir, G. M. Gomez and J. A. Muir, *Acta CrystaIlogr., Sect. C, 42 (1986) 1699.*
- **48** F. D. Rochon, R. Melanson, H. E. Howard-Lock, C. J. L. Lock and J. Turner, Can. J. Chem., 62 (1984) 860.
- **49** H. H. Eysel, E. Guggolz, M. Kopp and M. L. Ziegler, Z. *Anorg. Allg. Chem., 499 (1983) 31.*
- **50** J. W. Laucher and J. A. Ibers, Inorg. *Chem., 14 (1975) 640.*
- 51 W. Beck, M. Keubler, E. Leidl, U. Nagel, M. Schaal, S. Cenini, P. Del Buttero, E. Licandro, S. Maiorana and A. Chiesi-Villa, J. *Chem. Sot., Chem. Commun., (1981) 446.*
- **52** L. Maresca, G. Natile, F. P. Intini, F. Gasparrini, A. Tiripicchio and M. Tiripicchio-Camellini, *J. Am.* Chem. Soc., 108 (1986) 1180.
- **53** E. C. Constable, R. P. G. Henney, T. A. Leese and D. A. Tocher, J. Chem. Soc., Chem. Commun., (1990) 513.
- **54** J. Chatt, *Coord. Chem. Rev., 43 (1982) 337.*
- **55** R. Melanson, J. Hubert and F. D. Rochon, *Acta Crystallogr., Sect. B, 32 (1976) 1914.*
- 56 S. S. Sotman, V. S. Fundamensky, V. Yu. Kukushki and E. Yu. Pankova, *Zh. Obshch. Khim., 58 (1988) 2297; J. Gen. Chem. (Engl. Transl.), 58 (1988) 2044.*
- 57 G. Annibale, M. Bonivento, L. Canovese, L. Cattalini, G. Michelon and **M. Tobe,** *Inorg.* **Chem., 24 (198.5) 797.**
- 58 J. Price, A. Williamson, R. Schramm and B. Waylan *Inorg. Chem., 11* (1972) 1280.
- 59 R. Romeo, D. Minnitti and S. Lanza, *Inorg. Chim. Acta, 22 (1977) 87.*
- 60 V. Yu. Kukushkin, V. K. Belsky, E. A. Aleksandro E. Yu. Pankova, V. E. Konovalov, V. N. Yakovlev and A. I. Moiseev, *Zh. Obshch. Khim.,* 61 (1991) 318.
- 61 W. Reynolds, Prog. *Inorg Chem., 12 (1970)* 1.
- 62 S. V. Dozmarov, *Zh. Prikl. Spektrosk, 45 (1986) 438.*
- 63 J. A. Davies, *Adv. Inorg Chem. Radiochem., 24 (1981) 115.*
- 64 L. V. Konovalov and V. G. Pogareva, *Zh. Strukt. Khim.,* 22 (1981) 159.
- 65 M. Trauquille and M. Fare], *Spectrochim. Acta, Pati A, 26 (1970) 1023.*
- 66 *S. G.* Murray and F. R. Hartley, *Chem. Rev., 81 (1981) 365.*
- 67 *G.* W. Horn, R. Kumar, A. W. Maverick, F. R. Fronczek and S. F. Watkins, *Acta Crystallogr., Sect. C, 46 (1990) 135.*
- 68 J. C. Huffman and B. R. Lloyd, *Inorg.* Chem., 28 (1989) 3087.
- 69 H.-P. Abicht, K. Jurkschat, K. Peters, E.-M. Peters and H. G. Von Schnering, *J. Organomet. Chem., 364* (1989) 415.
- 70 A. A. Dvorkin, Yu. A. Simonov, T. I. Malinovsky, S. V. Pavlova and L. I. Budarin, *Zh. Neorg. Khim.,* 34 (1989) 2593.
- 71 L. V. Konovalov, *Koord. I&m.,* I4 (1988) 600.
- 72 L. V. Konovalov, V. Yu. Kukushkin, V. K. Belsky and V. E. Konovalov, *Zh. Neorg. Khim.,* 35 (1990) 1523.
- 13 L. V. Konovalov, V. G. Pogareva, A. E. Stanevich and T. N. Fomina, *Koord. Khim., 15* (1989) 538.
- 74 *S.* J. S. Kerrison and P. J. Sadler, *Inorg. Chim. Acta, IO4 (1985) 197.*
- 75 L. G. Marzilli, Y. Hayden and M. D. Reily, *Inorg Chem., 25 (1986) 974.*
- 76 *S.* J. S. Kerrison and P. J. Sadler, J. *Chem. Sot., Chem. Commun., (1977) 861.*
- 77 J. D. Fotheringham, G. A. Heath, A. J. Lindsay and T. A. Stephenson, *J.* Chem. *Res., Synop.,* (1986) 82.
- 78 P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor and I. R. H. Marshall, J. *Chem. Sot., Dalton Trans., (1976) 459.*
- 79 *N.* JuraniC, *Coord.* Chem. *Rev.,* 96 (1989) 253.

Note added in proof

After reading this paper, Professor M. A. Porai-Koshits noted that all bis-sulfoxide complexes which are listed in Table 6 may be divided into two types. In complexes of the first type the oxygen atom of one of the sulfoxide ligands occupies a non-equatorial position and contacts with an equatorial oxygen atom of another $R₂SO$ ligand. In the second type of complex oxygen atoms of both the

sulfoxide ligands have an equatorial position. Differences strengthening of the $S=O \pi$ -interaction. The latter results in Pt-S distances and Pt-S-O angles are manifested in a shortening of the Pt-S and S=O bond lengths a in Pt-S distances and Pt-S-O angles are manifested clearly in the first type of complex. Apparently, equatorial orientation of the S=O bond makes π -conjugation of the Pt d_{π} orbitals on the line Pt-S-O easy. This leads to M. A. Porai-Koshits for helpful discussions.

an increase of the $Pt-S-O$ angle due to repulsion of electrons of the $Pt-S$ and $S=O$ bonds. We thank Professor