Reactions of Ruthenium(II) Carbonyl Complexes

NICHOLAS C. THOMAS

Department of Chemistry, Auburn University at Mongomery, Montgomery, Ala. 36193, U.S.A.

(Received May 26, 1986)

Although originally believed to have low lability [1], substitution reactions of $Ru(CO)_2X_2$ (bidentate) complexes (e.g. X = Cl, Br; bidentate = 1,10-phenanthroline (phen), 2,2'-bipyridyl (bpy)) have been recently reported [2–4]. For instance, these complexes readily monodecarbonylate with trimethylamine-N-oxide (Me₃NO) in pyridine [2]. This reaction has now been studied with a variety of [Ru-(CO)₂X₂(bidentate)]ⁿ⁺ complexes (e.g. X = Cl, Me-CO₂, n = 0; X = MeCN, n = 2] in pyridine (py) and acetonitrile (MeCN), and the reactivity of the products, Ru(CO)X₂L(bidentate) (X = Cl, MeCO₂; L = py, MeCN), is also reported.

In typical reactions the complexes $Ru(CO)_2X_2$ -(bidentate) (X = Cl, MeCO₂) were stirred with 3 mol equivalents of Me₃NO at room temperature for 2 h in MeCN or py. Evaporation to dryness and recrystallization of the residue obtained the pure $Ru(CO)X_2L$ (bidentate) complexes (X = Cl, MeCO₂; L = MeCN, py), A single $\nu(Ru-Cl)$ infrared absorption for the dichloro complexes, or a single methyl ¹H NMR resonance for the bis(acetato) complexes indicates structure A for these compounds.

A similar reaction between $[Ru(CO)_2(MeCN)_2(bidentate)](PF_6)_2$ and Me₃NO in MeCN gave $[Ru(MeCN)_4(bidentate)](PF_6)_2$ (reaction (1)).

 $[Ru(CO)_2(MeCN)_2(bidentate)]^{2+} + 2Me_3NO$

+ 2MeCN \longrightarrow [Ru(MeCN)₄(bidentate)]²⁺ + 2Me₃N

$$2CO_2$$
 (1)

Removal of both CO groups under these mild reaction conditions can be attributed to the weak Ru-CO bond as indicated by the high ν (CO) stretching frequencies at *ca.* 2100 and 2050 cm⁻¹ for [Ru(CO)₂(MeCN)₂(bidentate)]²⁺ complexes [5]. By contrast, Ru(CO)₂Cl₂(bidentate) complexes (with ν (CO) at *ca.* 2060 and 1990 cm⁻¹ [5]) undergo complete decarbonylation with Me₃NO in 2-methoxy-ethanol at reflux temperature [3].

In pyridine, $[Ru(CO)_2(MeCN)_2(bidentate)]^{2+}$ complexes only monodecarbonylate with Me₃NO to give $[Ru(CO)py(MeCN)_2(bidentate)]^{2+}$. Failure to remove the second CO in pyridine can be related to the low $\nu(CO)$ value for $[Ru(CO)py(MeCN)_2-(bidentate)]^{2+}$ (ca. 1990 cm⁻¹). By contrast, $[Ru(CO)(MeCN)_3(bidentate)]^{2+}$ (prepared below), which has a higher $\nu(CO)$ of ca. 2040 cm⁻¹ and is presumably initially formed during reaction (1), readily decarbonylates with Me₃NO in py or MeCN to form $[Ru(L)(MeCN)_3(bidentate)]^{2+}$ (L = py, MeCN). Generally, Me₃NO induced decarbonylations are restricted to complexes with $\nu(CO) > 2000$ cm⁻¹ [6].

The complexes [Ru(CO)Cl(MeCN)L(bidentate)]-(PF₆) (L = py, MeCN) were prepared from the reaction of the corresponding Ru(CO)Cl₂L(bidentate) complex with trifluoromethanesulfonic acid (CF₃-SO₃H) in boiling MeCN for 0.25 h. Evaporation to dryness, followed by addition of ethanol/ether gave the trifluoromethanesulfonate salts which, after treatment with aqueous KPF₆, were isolated as the hexafluorophosphates. The stereochemistry of the products (structure **B**, reaction (2)) was established from ¹H NMR data (below).

A similar reaction between $Ru(CO)_2Cl_2(bidentate)$ and $CF_3SO_3H/MeCN$ resulted in no reaction. Presumably the additional CO ligand with its strong π acceptor properties enhances the Ru–Cl bond strength, making the dicarbonyl complexes less labile.

Both anionic ligands of $Ru(CO)(MeCO_2)_2 L$ (bidentate) (L = py, MeCN) were displaced in CF₃SO₃H/ MeCN forming the dicationic [Ru(CO)(MeCN)₂L-(bidentate)] (PF₆)₂ complexes (reaction (3))

¹H NMR data indicates structure **C** for [Ru-(CO)(MeCN)₂L(bidentate)[(PF₆)₂ complexes since the two pyridine rings of the bidentate ligands are inequivalent. Structure **B** is tentatively assigned for [Ru(CO)Cl(MeCN)L(bidentate)](PF₆) complexes based on similar aromatic resonances, and the observation of two inequivalent MeCN groups (for L = MeCN).

© Elsevier Sequoia/Printed in Switzerland

Some acetonitrile displacement reactions have also been investigated. For instance, in boiling 2-ethoxyethanol, $[Ru(MeCN)_4(bidentate)]^{2+}$ reacts with bpy or phen forming the corresponding $[Ru-(bidentate)_3]^{2+}$ complexes. Under similar conditions $[Ru(CO)(MeCN)_3(bidentate)]^{2+}$ complexes react with 2,2'-6',2"-terpyridyl (tpy) yielding $[Ru(CO)-(tpy)(bidentate)]^{2+}$ complexes.

All new complexes were characterized by elemental analysis (C, H, N or Cl), infrared and ¹H NMR spectroscopy. The previously reported complexes $[Ru(MeCN)_4(bidentate)]^{2+}$ [7], and [Ru(biden $tate)_3]^{2+}$ [8, 9] were identified by their reported spectroscopic properties.

Acknowledgement

Funding for this work was provided by the AUM Grant-in-Aid program for which the author is grateful.

References

- 1 J. V. Kingston, J. W. S. Jamieson and G. Wilkinson, J. Inorg. Nucl. Chem., 29, 133 (1967).
- 2 D. St. C. Black, G. B. Deacon and N. C. Thomas, *Inorg. Chim. Acta*, 54, L143 (1981).
- 3 D. St. C. Black, G. B. Deacon and N. C. Thomas, *Inorg. Chim. Acta*, 65, L75 (1982).
- 4 K. Joseph, S. S. Deshpande, S. A. Pardhy, I. R. Unny, S. K. Pandit, S. Gopinathan and C. Gopinathan, *Inorg. Chim. Acta*, 82, 59 (1984).
- 5 D. St. C. Black, G. B. Deacon and N. C. Thomas, Aust. J. Chem., 35, 2445 (1982).
- 6 D. J. Blumer, K. W. Barnett and T. L. Brown, J. Organomet, Chem., 173, 71 (1979).
- 7 R. R. Schrock, B. F. G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., 951 (1974).
- 8 R. J. Stanicwicz, R. F. Sympson and D. G. Hendricker, Inorg. Chem., 16, 2166 (1977).
- 9 J. D. Miller and R. H. Prince, J. Chem. Soc., 3185 (1965).