Reduction of Pentaamminenitrocobalt(II1) by Hexaaquachromium(I1) Ion. Reinvestigation of the Mechanism

KEIICHI TSUKAHARA

Department of Chemistry, Faculty of Science, Shimane University, Matsue 690, Japan **(Received January 31, 1986; revised May 14, 1986)**

Abstract

Products of the reduction of $[CoNO₂(NH₃)₅]^{2+}$ by $Cr²⁺$ were separated and identified under the conditions of $\left[\text{Cr}^{2+}\right]_0/ \left[\text{Co(III)}\right]_0 \leq 3$ and 0.02 M $\leq \left[\text{H}^*\right] \leq$ 0.75 M. The product distribution was dependent on both $[Cr^{2+}]_0$ and $[H^+]$. The following mechanism is proposed:

[CoNO₂(NH₃)₅]²⁺ + Cr²⁺
$$
\longrightarrow
$$

Co²⁺ + [CrONO(H₂O)₅]²⁺ (i)

$$
[CrONO(H2O)5]2+ + H+ \longrightarrow [Cr(H2O)6]3+ + HNO2
$$

(ii)

 $[{\rm CrONO(H}_2O)_5]^{2+}$ + ${\rm Cr^{2+}} \longrightarrow$

$$
Cr(IV) + [CrNO(H2O)5]2+ (iii)
$$

$$
Cr(IV) + Cr^{2+} \longrightarrow [(H_2O)_4Cr(OH)_2Cr(H_2O)_4]^{4+}
$$

\n
$$
HNO_2 + 2Cr^{2+} \longrightarrow [Cr(H_2O)_6]^{3+} + [CrNO(H_2O)_5]^{2+}
$$

\n
$$
(v)
$$

Introduction

Electron-transfer reactions of the type $[Co^{III}X (NH₃)₅$ ⁿ⁺ with hexaaquachromium(II) ions $(Cr²⁺)$ have been studied extensively. In some cases a chemical mechanism has been found, in which an electron is trapped in X before the electron is transferred to δ balt(III) $\begin{bmatrix} 1 \end{bmatrix}$. In the reduction of $\begin{bmatrix} \text{C}_0 \text{N} \text{O}_{12} \end{bmatrix}$ (H_5) e^{12^2} by Cr^{2+} a ligand reduction to NO was suggested with a formation of $[CrNO(H₂O)₅]^{2+}$. $(CrNO²⁺)$ [2]. The stoichiometry of this reaction has been found to be $[Cr(II)]$: $[Co(III)] = 3:1$. Later the following mechanism was suggested [3] :

$$
[CoIIINO2(NH3)5]2+ + Cr2+ H'
$$

$$
Co2+ + [CrIIIONO(H2O)5]2+ + 5NH4+
$$
 (1)

0020-1693/86/\$3.50

$$
[Cr^{III}ONO(H_2O)_s]^{2+} + Cr^{2+} \longrightarrow
$$

\n
$$
[Cr(H_2O)_6]^{3+} + [Cr^{III} NO_2(H_2O)_s]^{+}
$$
 (2)
\n
$$
[Cr^{III} NO_2(H_2O)_s]^{+} + Cr^{2+} \longrightarrow
$$

\n
$$
[CrNO(H_2O)_s]^{2+} + [Cr(H_2O)_6]^{3+}
$$
 (3)

In this mechanism the nitro group is reduced to the nitrosyl group without a release of nitrite ion from the metal center. Matts and Moore [4] have demonstrated that the aquation of [CrONO- (H_0) , $1^{2+}(Cr_0N_0)^{2+}$ is very fast in acidic solu- \cos If the aquation of CrONO^{2+} competed with the reduction by Cr^{2+} , free nitrite ion would be detected. It has been reported that Cr^{2+} reduces $NO₃⁻$ to $NO₂⁻$ with a formation of $[(H₂O)₄Cr(OH)₂$ - $Cr(H₂O)₄]^{4+}(Cr(OH)₂Cr⁴⁺)$ via a $Cr(IV)$ intermediate [5, 6]. A formation of the dimer, $Cr(OH)₂$ c^{4+} is a characteristic of the $2e^-$ reduction by c^{2+} . We have found that $Cr(OH)$, Cr^{4+} is also produced in the reduction of $[CoNO₂(NH₃)₅]²⁺$ by $Cr²⁺$ and that a free nitrite ion is detected under certain conditions. Therefore, the above mechanism should be reinvestigated. In this paper we report on the product analyses of this reaction and propose a new mechanism.

Experimental

Materials

 $[CoNO₂(NH₃)₅](ClO₄)₂$ and $[CrONO(NH₃)₅]$. $(CIO₄)₂$ were prepared according to the literature method [7]. A solution of hexaaquachromium(II1) perchlorate was prepared by the reduction of chromium trioxide in perchloric acid with hydrogen peroxide. Chromium(H) perchlorate solutions were prepared by a Zn/Hg reduction in a nitrogen atmosphere. The concentrations of the hydrogen ions in chromium(II1) and chromium(H) solutions were determined by the method in the literature [8, 91. The remaining chemicals used were the purest commercial products.

0 Elsevier Sequoia/Printed in Switzerland

Product Analyses

Solutions containing a cobalt(II1) complex were added to an optical cell, which was sealed with a serum cap. After the solution had been purged with nitrogen gas for 20 min, the reaction was initiated by the addition of the chromium(H) solution containing $HClO₄$ and NaClO₄ by means of a syringe. The reaction was completed within 5 s under the present experimental conditions $({[Cr^{2+}]_0}/{[Co(H)]_0} \leq 3$ at room temperature). The solution was diluted ten times with water and poured onto an SP-Sephadex C-25 column (H⁺ form). $HNO₂$ was passed through the column by washing with water when Cr^{2+} was used in less than three times excess over Co(II1). $HNO₂$ was identified and analyzed spectrophotometrically [lo]. Five species were adsorbed on the column. The first reddish-brown and the second pink ecies were eluted with a 0.1 M HClO_c solution and entified as $CrNO^{2+}$ and Co^{2+} respectively. $CrNO^{2+}$ oved faster than Co^{2+} on the column but these could not be separated completely with a 0.1 M HC104 solution. Therefore, these were collected together for the analyses of the contents of chromium and cobalt. The third yellow-brown species was completely separated from $CrNO^{2+}$ and Co^{2+} with a 0.1 M $HClO₄$ solution and finally eluted out with a 0.1 M HClO₄-0.2 M NaClO₄ solution. It was entified as $[C_0N_0(NH_2),]^{2+}$ The fourth blueolet species was eluted with a 0.1 M HClO. -0.4 M NaClO₄ solution and identified as $[Cr(H₂O)₆]^{3+}$. (Cr^{3+}) . The final green band was further separated into two bands with a 0.1 M $HClO₄-0.6$ M $NaClO₄$ solution. These are $Cr(OH)_2Cr^{4+}$ and/or $[(H_2O)_5$ - $CrOCr(H₂O)₅$ ⁴⁺. However these were collected together for the analysis.

The chromium content was determined spectrophotometrically in the form of $CrO₄²⁻$ after oxidation with an alkaline hydrogen peroxide solution. For the solution of $CrNO^{2+}$ containing Co^{2+} , cobalt oxide was removed by filtration. The cobalt(H) content was determined by Kitson's method [11]. The chromium(II1) species did not interfere in the analysis of the cobalt(I1) species. The cobalt(II1) complex was reduced to cobalt(H) with Zn/Hg.

Absorption spectra were recorded on a Hitachi 200-20 spectrophotometer.

Results and Discussion

It is known that $CrNO^{2+}$ reacts slowly with Cr^{2+} to form a dimeric species which contains a hydroxyamino group $[12]$. Therefore, the product analyses ere carried out at $[Cr^{2+}]$ $/[C_0(III)] \leq 3$. The sults are summarized in Table I. When Cr^{2+} reacted th $[CoNO (NH \ 3)]^{2+}$ in the ratio of $[Cr^{2+}]/$ $\text{C}_\text{O}(\text{H1}) = 3$, almost of all the $\text{C}_\text{O}(\text{H1})$ ions were $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ was not detected. Moreover \cos of Cr^{2+} ions was not detected, because the spectrum was not changed by the introduction of air after the reaction was completed. If an excess of $^{2+}$ remained, Cr^{2+} should be converted to $Cr(OH)$ $4+$ by Ω . [13] In agreement with earlier work we found that the reactions are consumed in the ratio $3Cr(II)$ to $1Co(III)$.

TABLE I. Product Analyses of the Reduction of $[CoNO₂(NH₃)₅]²⁺$ by $Cr²⁺$ at $\mu = 1$ M (HClO₄-NaClO₄) and at Room Temperature

$[Cr^{2+}]_0$ \times 10 ³ (M)	$[Co(III)]_0$ $\times 10^3$ (M)	$[H^+]$ (M)	$[CrNO2+]$ $\times 10^3$ (M)	$[Cr^{3+}]$ $\times 10^3$ (M)	$[Cr(OH)2Cr4+]$ $\times 10^3$ (M)	$[Co2+]$ $\times 10^3$ (M)	[Co(III)] $\times 10^3$ (M)	[HNO ₂] ^a $\times 10^3$ (M)
8.63	6.53	0.021	3.01	1.08	2.23	3.80	2.71	≥ 0.89
8.63	8.20	0.13	1.65	4.11	1.27	4.93	2.84	$\geqslant3.1$
6.53	6.53	0.20	1.31	2.85	1.13	4.00	2.20	≥ 1.9
6.53 ^b	6.53	0.20	1.87	4.01	0.22	3.01	3.55	\mathbf{c}
8.63	8.35	0.25	1.49	6.25	0.80	5.52	2.37	\mathbf{r}
8.63	8.28	0.38	1.36	4.98	0.56	5.27	3.04	
8.63	8.32	0.50	0.99	6.60	0.40	5.49	2.74	≥ 4.7
8.63	8.38	0.62	1.01	6.80	0.24	6.59	2.05	\mathbf{c}
17.3	8.47	0.13	3.86	4.14	4.50	7.40	1.13	$\frac{-c}{-c}$
17.3	8.29	0.26	4.73	5.83	3.55	7.85	0.24	
17.3	8.30	0.48	5.83	7.30	1.92	6.73	1.05	\mathbf{c}
17.3	8.38	0.75	4.56	9.64	1.09	7.10	1.24	\mathbf{C}
3.45	8.34	0.25	0.51	2.31	0.31	2.83	5.01	\mathbf{c}
8.63	14.0	0.25	1.13	5.59	0.62	5.03	8.29	\mathbf{C}
13.8	7.94	0.25	2.49	6.37	2.00	6.62	0.23	\mathbf{e}
20.7	8.38	0.25	5.66	5.76	3.90	6.73	0.48	\mathbf{c}
24.6	8.20	0.25	8.06	3.37	6.74	8.10	0.08	$0^{\mathbf{d}}$

^aMinimum values, some were lost as an $HNO₂$ gas during the solution was bubbled with a nitrogen gas. 6.53×10^{-3} M sodium nitrite. ^cNot determined. ^dNot detected. b_{In the presence of}

Fig. 1. Plots of $\left[\text{Cr}\right]/\left[\text{Co}^{2+}\right]$ vs. $\left[\text{H}^+\right]$ at $\left[\text{Cr}^{2+}\right]_0/\left[\text{Co(III)}\right]_0$ \approx 1. (o) CrNO²⁺, (o) Cr³⁺; (o) Cr(OH)₂Cr⁴⁺.

Fig. 2. Plots of $\left[\text{Cr}\right]/\left[\text{Co}^{2+}\right]$ vs. $\left[\text{H}^{\dagger}\right]$ at $\left[\text{Cr}^{2+}\right]_0/\left[\text{Co(III)}\right]_0 \approx$ 2. (o) CrNO²⁺; (o) Cr³⁺, (o) Cr(OH)₂Cr⁴⁺.

Hydrogen ion dependences of the product distribution $([Cr]/[Co²⁺]$ are shown in Fig. 1 $({[Cr^{2+}]_0}/{[Co(III)]_0} \approx 1)$ and in Fig. 2 $({[Cr^{2+}]_0}/{[O(III)]_0})$ $[Co(III)]_0 \approx 2$). When $[Cr^{2+}]_0/[Co(III)]_0 \approx 1$, $[CrNO^{2+}]$ and $[Cr(OH)₂Cr^{4+}]$ decrease with an Increase in $[H^{\dagger}]$, while $[Cr^{3+}]$ increases and reaches to \sim 1. This suggests that CrNO²⁺ and Cr(OH)₂Cr⁴⁺ are produced through a different path from that for Cr^{3+} ; the latter path must be dependent on $[H^+]$. When $[Cr^{2+}]_0/[C_0(III)]_0$ increases to 2, $[Cr\overline{NO}^{2+}]$ increases with an increase in [H'] in contrast with $Cr(OH)₂Cr⁴⁺$. This means that an additional path, dependent on both $[H^{\dagger}]$ and $[Cr^{2+}]_0$, produces Cr^{3+} and $CrNO^{2+}$. When $[Cr^{2+}]_0/[Co(HI)]_0 \sim 1$, $HNO₂$ was always detected. Therefore, it is suggested that $HNO₂$ is released which reacts with Cr^{2+} to generate Cr^{3+} and $CrNO^{2+}$. The secondorder rate constant of the reduction of $HNO₂$ by Cr^{2+} to form Cr^{3+} and $CrNO^{2+}$ has been reported

Fig. 3. Plot of $[Cr^{3+}]/[Cr(OH)_2Cr^{4+}]$ vs. $[H^+]$ at $[Cr^{2+}]_0/$ $[Co(III)]_0 \approx 1.$

Fig. 4. Plots of $[Cr]/[Co^{2+}]$ vs. $[Cr^{2+}]_{0}/[Co(III)]_{0}$ at $[H^+]$ = 0.25 M. (o) $CrNO^{2+}$, (o) Cr^{3+} ; (o) $Cr(OH)_2Cr^{4+}$.

to be 4.5×10^3 M⁻¹ s⁻¹ at 25 °C and μ = 1 and is independent of $[H^{\dagger}]$ [6]. The aquation of CrONO²⁺ in acidic solutions is fast and the rate constant at 25 °C and $\mu = 1$ is *k* (s⁻¹) = 2.0[H⁺] + 4.6[H⁺]² [4]. Therefore, $HNO₂$ must be produced through the aquation of $CrONO^{2+}$ formed by the Cr^{2+} reduction of $[CoNO₂(NH₃)₅]²⁺$. This is also supported by the result that a quadratic curve with a zero intercept is obtained when $[Cr^{3+}]/[Cr(OH)_2Cr^{4+}]$ is plotted against $[H^{\dagger}]$ as shown in Fig. 3 ($[Cr^{3+}]/$ $[Cr(OH)_2Cr^{4+}] = 18[H^+] + 32[H^+]^2$). Figure 4 shows the $\{Cr^{2+}\}\$ ₀ dependence of the product distribution at $[H^{\dagger}] = 0.25$ M. $[Cr(OH)_2Cr^{4+}]$ and $[CrNO^{2+}]$ increase with an increase in $[Cr^{2+}]_0$, while $[Cr^{3+}]$ decreases. This suggests that $Cr(OH)_2Cr^{4+}$ and $CrNO^{2+}$ are produced in a $[Cr^{2+}]_0$ -dependent path. It is known that the reactions of Cr^{2+} with HNO_3 , Tl(III) and O_2 produced $Cr(OH)_2Cr^{4+}$ via a $Cr(IV)$ intermediate $[5, 6, 13-15]$. In the present system,

therefore, the Cr(IV) intermediate must be contained. From the above results the following mechanism is suggested:

$$
[CoIIINO2(NH3)5]2+ + Cr2+ \longrightarrow Co2+ + CrONO2+
$$

$$
CrONO^{2+} + H^+ \longrightarrow Cr^{3+} + HNO_2
$$
 (5)

$$
CrONO^{2+} + Cr^{2+} \longrightarrow Cr(IV) + CrNO^{2+}
$$
 (6)

$$
Cr(IV) + Cr^{2+} \xrightarrow{fast} Cr(OH)_2Cr^{4+}
$$
 (7)

$$
HNO2 + Cr2+ \longrightarrow Cr3+ + NO
$$
 (8)

$$
NO + Cr^{2+} \xrightarrow{\text{fast}} CrNO^{2+} \tag{9}
$$

This mechanism contains the inner-sphere electron transfer through a $NO₂$ bridge followed by competition of the aquation of CrONO²⁺ with the innersphere type reduction by Cr^{2+} . The first step is the same as that proposed previously [3]. Fraser [3] vestigated this reaction over the $[H^{\dagger}]$ range tween 0.2 M and 0.6 M and at $[Cr^{2+}]_0/[Co(III)]_0$ ≤ 3 , but did not take acccount of the rapid aquation of CrONO²⁺. In the presence of an equimolar amount of $HNO₂$ to Co(III), $[Co²⁺]$ decreased compared with that in the absence of $HNO₂$ (see Table I), indicating that the rate of reaction (4) is comparable with that of reaction (8).

It has been reported that the formulation Cr^I . NO⁺ is more feasible than Cr^{III}NO⁻ for the oxidation state of $CrNO^{2+}$ [2, 16]. In the formation of $Cr(IV)$ and $CrNO^{2+}$, therefore, the following $2e^$ reduction may be contained:

$$
Cr^{III} \overrightarrow{-O} N \begin{matrix} O \\ O \\ Cr^{II} \end{matrix} \longrightarrow Cr^{IV} - O + Cr^{IV} NO^{+} \tag{10}
$$

hen a solid sample of $[CrONO(NH_3)_{5}] (ClO_4)_{2}$ as dissolved in a Cr^{2+} solution at $[H^{\dagger}] = 0.02$ M and $[Cr^{2+}]_0/[Cr(III)]_0 = 1$ in nitrogen gas, $[CrH_2$ - $O(NH_3)$ ₅]³⁺, CrNO²⁺ and Cr³⁺ were detected. There was no evidence for the formation of $Cr(OH)_2Cr^{4+}$. This shows that a rapid aquation of [CrONO- $(NH_3)_5]^2$ ⁺ occurred and that this is followed by the reduction of $HNO₂$ by $Cr²⁺$. This may arise from the fact that the aquation of $[{\rm CroNO(NH_3)_5}]^{2+}$ is faster than that of $CrONO^{2+}$ [4].

It is interesting to make a comparison with pentaamminenitratocobalt(III), $[CoNO₃(NH₃)₅]²⁺$, whose

system has been examined by Swaddle [5]. Thirtythree percent of the reaction proceeds through the reduction of the central cobalt(II1) ion to the cobalt- (II) ion with a formation of $[CrNO₃(H₂O)₅]^{2+}$ (CrNO_3^{2+}) when $[\text{Cr}^{2+}]_0/[\text{Co(III)}]_0 = 1$. The remaining sixty-seven percent of the reaction proceeds through the reduction of the coordinated nitrato and to generate $Cr(OH)_{2}Cr^{4+}$ as one of the prodts. The reaction of $CrNO_3^{2+}$ with Cr^{2+} also proceeds through the reduction of the coordinated trato ligand to generate $Cr(OH)_{2}Cr^{4+}$, Cr^{3+} and NO^{2+} . The aquation of CrNO₃²⁺ is sufficiently slow for the reduction by Cr^{2+} to go to completion $[5]$.

In conclusion, the $2e^-$ reduction step is contained in the reductions by Cr^{2+} of CrONO²⁺, CrNO₃²⁺, $\rm oNO_3(NH_3)_5]^{2+}$ and HNO₃, but not in those of $[6000(NH_3)_5]^{2+}$ and HNO₂.

Acknowledgement

The author would like to thank Ms. Junko Uesako for her experimental assistance.

References

 (1)

- E. S. Gould, *Act. Chem. Rex, 18,* 22 (1985) and refs. therein.
- W. P. Griffith,J. *Chem. Sot.,* 3286 (1963).
- R. T. M. Fraser, J. *Chem. Sot.,* 3641 (1965).
- T. C. Matts and P. Moore, Z. *Chem. Sot. A,* 1997 (1969).
- T. W. Swaddle,J. *Am. Chem. Sot., 89, 4338* (1967).
- H. Ogino, K. Tsukahara and N. Tanaka, *Bull. Chem. Sot. Jpn., 47, 308 (1974).*
- *I* M. Linhard, H. Siebert and M. Weigel, 2. *Anorg. Allg. Chem., 278, 287* (1955).
- *8* E. L. King and J. A. Neptune, J. *Am. Chem. Sot., 77, 3186* (1955).
- K. D. Kopple and R. R. Miller, *Inorg. Chem., 2*, 1204 (1963).
- 10 C. A. Bunton and G. Stedman, J. *Chem. Sot., 2440 (1958).*
- 11 R. E. Kitson, *Anal. Chem., 22, 664* (1950).
- J. N. Armor and M. Buchbinder, *Inorg. Chem., 12*, 1086 (1973).
- R. W. Kolaczkowski and R. A. Plane, *Inorg. Chem.*, 3, *322* (1964).
- 14 M. Ardon and R. A. Plane, J. *Am. Chem. Sot., 81,* 3197 (1959).
- R. M. Sellers and M. G. Simic, *J. Chem. Soc., Chem.* Commun., 401 (1975).
- 16 I. Bernal, S. D. Robinson, L. S. Meriwether and G. Wilkinson, *Chem. Commun., 571* (1965).