Reduction of Pentaamminenitrocobalt(III) by Hexaaquachromium(II) Ion. Reinvestigation of the Mechanism

KEIICHI TSUKAHARA

Department of Chemistry, Faculty of Science, Shimane University, Matsue 690, Japan (Received January 31, 1986; revised May 14, 1986)

Abstract

Products of the reduction of $[CoNO_2(NH_3)_5]^{2+}$ by Cr^{2+} were separated and identified under the conditions of $[Cr^{2+}]_0/[Co(III)]_0 \le 3$ and 0.02 $M \le [H^+] \le 0.75$ M. The product distribution was dependent on both $[Cr^{2+}]_0$ and $[H^+]$. The following mechanism is proposed:

$$[CoNO_2(NH_3)_5]^{2+} + Cr^{2+} \longrightarrow$$
$$Co^{2+} + [CrONO(H_2O)_5]^{2+} \qquad (i)$$

$$[CrONO(H_2O)_5]^{2+} + H^+ \longrightarrow [Cr(H_2O)_6]^{3+} + HNO_2$$
(ii)

 $[CrONO(H_2O)_5]^{2+} + Cr^{2+} \longrightarrow$

$$Cr(IV) + [CrNO(H_2O)_5]^{2+}$$
 (iii)

$$Cr(IV) + Cr^{2+} \longrightarrow [(H_2O)_4Cr(OH)_2Cr(H_2O)_4]^{4+}$$

$$(iv)$$

$$HNO_2 + 2Cr^{2+} \longrightarrow [Cr(H_2O)_6]^{3+} + [CrNO(H_2O)_5]^{2+}$$

$$(v)$$

Introduction

Electron-transfer reactions of the type $[Co^{111}X (NH_3)_5]^{n+}$ with hexaaquachromium(II) ions (Cr^{2+}) have been studied extensively. In some cases a chemical mechanism has been found, in which an electron is transferred to cobalt(III) [1]. In the reduction of $[CoNO_2 (NH_3)_5]^{2+}$ by Cr^{2+} a ligand reduction to NO was suggested with a formation of $[CrNO(H_2O)_5]^{2+} (CrNO^{2+})$ [2]. The stoichiometry of this reaction has been found to be [Cr(II)]:[Co(III)] = 3:1. Later the following mechanism was suggested [3]:

$$[\operatorname{Co}^{\mathrm{III}}\operatorname{NO}_{2}(\operatorname{NH}_{3})_{5}]^{2+} + \operatorname{Cr}^{2+} \xrightarrow{\mathrm{H}^{+}}$$
$$\operatorname{Co}^{2+} + [\operatorname{Cr}^{\mathrm{III}}\operatorname{ONO}(\mathrm{H}_{2}\mathrm{O})_{5}]^{2+} + 5\operatorname{NH}_{4}^{+} \qquad (1)$$

0020-1693/86/\$3.50

$$[Cr^{III}ONO(H_2O)_5]^{2+} + Cr^{2+} \longrightarrow$$

$$[Cr(H_2O)_6]^{3+} + [Cr^{III}NO_2(H_2O)_5]^{+} \qquad (2)$$

$$[Cr^{III}NO_2(H_2O)_5]^{+} + Cr^{2+} \longrightarrow$$

$$[CrNO(H_2O)_5]^{2+} + [Cr(H_2O)_6]^{3+} \qquad (3)$$

In this mechanism the nitro group is reduced to the nitrosyl group without a release of nitrite ion from the metal center. Matts and Moore [4] have demonstrated that the aquation of [CrONO- $(H_2O)_5]^{2+}(CrONO^{2+})$ is very fast in acidic solutions. If the aquation of $CrONO^{2+}$ competed with the reduction by Cr^{2+} , free nitrite ion would be detected. It has been reported that Cr^{2+} reduces NO_3^- to NO_2^- with a formation of $[(H_2O)_4Cr(OH)_2^ Cr(H_2O)_4]^{4+}(Cr(OH)_2Cr^{4+})$ via a Cr(IV) intermediate [5, 6]. A formation of the dimer, Cr(OH)₂- Cr^{4+} , is a characteristic of the 2e⁻ reduction by Cr^{2+} . We have found that $Cr(OH)_2Cr^{4+}$ is also produced in the reduction of $[CoNO_2(NH_3)_5]^{2+}$ by Cr^{2+} and that a free nitrite ion is detected under certain conditions. Therefore, the above mechanism should be reinvestigated. In this paper we report on the product analyses of this reaction and propose a new mechanism.

Experimental

Materials

 $[CoNO_2(NH_3)_5](CIO_4)_2$ and $[CrONO(NH_3)_5]$ - $(CIO_4)_2$ were prepared according to the literature method [7]. A solution of hexaaquachromium(III) perchlorate was prepared by the reduction of chromium trioxide in perchloric acid with hydrogen peroxide. Chromium(II) perchlorate solutions were prepared by a Zn/Hg reduction in a nitrogen atmosphere. The concentrations of the hydrogen ions in chromium(III) and chromium(II) solutions were determined by the method in the literature [8, 9]. The remaining chemicals used were the purest commercial products.

Product Analyses

Solutions containing a cobalt(III) complex were added to an optical cell, which was sealed with a serum cap. After the solution had been purged with nitrogen gas for 20 min, the reaction was initiated by the addition of the chromium(II) solution containing $HClO_4$ and $NaClO_4$ by means of a syringe. The reaction was completed within 5 s under the present experimental conditions $([Cr^{2+}]_0/[Co(III)]_0 \le 3$ at room temperature). The solution was diluted ten times with water and poured onto an SP-Sephadex C-25 column (H^{+} form). HNO₂ was passed through the column by washing with water when Cr^{2+} was used in less than three times excess over Co(III). HNO₂ was identified and analyzed spectrophotometrically [10]. Five species were adsorbed on the column. The first reddish-brown and the second pink species were eluted with a 0.1 M HClO₄ solution and identified as $CrNO^{2+}$ and Co^{2+} , respectively. $CrNO^{2+}$ moved faster than Co^{2+} on the column, but these could not be separated completely with a 0.1 M HClO₄ solution. Therefore, these were collected together for the analyses of the contents of chromium and cobalt. The third yellow-brown species was completely separated from CrNO²⁺ and Co²⁺ with a 0.1 M HClO₄ solution and finally eluted out with a 0.1 M HClO₄-0.2 M NaClO₄ solution. It was identified as $[CoNO_2(NH_3)_5]^{2+}$. The fourth blue-violet species was eluted with a 0.1 M HClO₄-0.4 M NaClO₄ solution and identified as $[Cr(H_2O)_6]^{3+}$ (Cr³⁺). The final green band was further separated into two bands with a 0.1 M HClO₄-0.6 M NaClO₄ solution. These are $Cr(OH)_2Cr^{4+}$ and/or $[(H_2O)_5-$ $CrOCr(H_2O)_5]^{4+}$. However these were collected together for the analysis.

The chromium content was determined spectrophotometrically in the form of CrO_4^{2-} after oxidation with an alkaline hydrogen peroxide solution. For the solution of $CrNO^{2+}$ containing Co^{2+} , cobalt oxide was removed by filtration. The cobalt(II) content was determined by Kitson's method [11]. The chromium(III) species did not interfere in the analysis of the cobalt(II) species. The cobalt(III) complex was reduced to cobalt(II) with Zn/Hg.

Absorption spectra were recorded on a Hitachi 200-20 spectrophotometer.

Results and Discussion

It is known that $CrNO^{2+}$ reacts slowly with Cr^{2+} to form a dimeric species which contains a hydroxyamino group [12]. Therefore, the product analyses were carried out at $[Cr^{2+}]_0/[Co(III)]_0 \leq 3$. The results are summarized in Table I. When Cr^{2+} reacted with $[CoNO_2(NH_3)_5]^{2+}$ in the ratio of $[Cr^{2+}]_0/[Co(III)]_0 = 3$, almost of all the Co(III) ions were consumed and HNO₂ was not detected. Moreover excess of Cr^{2+} ions was not detected, because the spectrum was not changed by the introduction of air after the reaction was completed. If an excess of Cr^{2+} remained, Cr^{2+} should be converted to $Cr(OH)_2$ - Cr^{4+} by O₂ [13]. In agreement with earlier work, we found that the reactions are consumed in the ratio 3Cr(II) to 1Co(III).

TABLE I. Product Analyses of the Reduction of $[CoNO_2(NH_3)_5]^{2+}$ by Cr^{2+} at $\mu = 1$ M (HClO₄-NaClO₄) and at Room Temperature

$[Cr^{2+}]_0 \times 10^3 (M)$	[Co(III)] ₀ × 10 ³ (M)	[H ⁺] (M)	$[CrNO^{2+}]$ × 10 ³ (M)	[Cr ³⁺] × 10 ³ (M)	$[Cr(OH)_2Cr^{4+}]$ × 10 ³ (M)	[Co ²⁺] × 10 ³ (M)	[Co(III)] × 10 ³ (M)	$[HNO_2]^a \times 10^3 (M)$
8.63	6.53	0.021	3.01	1.08	2.23	3.80	2.71	≥0.89
8.63	8.20	0.13	1.65	4.11	1.27	4.93	2.84	≥3.1
6.53	6.53	0.20	1.31	2.85	1.13	4.00	2.20	≥1.9
6.53 ^b	6.53	0.20	1.87	4.01	0.22	3.01	3.55	_c
8.63	8.35	0.25	1.49	6.25	0.80	5.52	2.37	c
8.63	8.28	0.38	1.36	4.98	0.56	5.27	3.04	≥4.7
8.63	8.32	0.50	0.99	6.60	0.40	5.49	2.74	c
8.63	8.38	0.62	1.01	6.80	0.24	6.59	2.05	c
17.3	8.47	0.13	3.86	4.14	4.50	7.40	1.13	_c
17.3	8.29	0.26	4.73	5.83	3.55	7.85	0.24	_c
17.3	8.30	0.48	5.83	7.30	1.92	6.73	1.05	c
17.3	8.38	0.75	4.56	9.64	1.09	7.10	1.24	_c
3.45	8.34	0.25	0.51	2.31	0.31	2.83	5.01	_ c
8.63	14.0	0.25	1.13	5.59	0.62	5.03	8.29	c
13.8	7.94	0.25	2.49	6.37	2.00	6.62	0.23	_c
20.7	8.38	0.25	5.66	5.76	3.90	6.73	0.48	_c
24.6	8.20	0.25	8.06	3.37	6.74	8.10	0.08	$0^{\mathbf{d}}$

^aMinimum values, some were lost as an HNO₂ gas during the solution was bubbled with a nitrogen gas. ^bIn the presence of 6.53×10^{-3} M sodium nitrite. ^cNot determined. ^dNot detected.

Fig. 1. Plots of $[Cr]/[Co^{2+}]$ vs. $[H^+]$ at $[Cr^{2+}]_0/[Co(III)]_0$ $\simeq 1.$ (•) $CrNO^{2+}$, (•) Cr^{3+} ; (•) $Cr(OH)_2Cr^{4+}$.

Fig. 2. Plots of $[Cr]/[Co^{2+}] \nu s$. $[H^+]$ at $[Cr^{2+}]_0/[Co(III)]_0 \simeq$ 2. (\circ) CrNO²⁺; (\bullet) Cr³⁺, (\bullet) Cr(OH)₂Cr⁴⁺.

Hydrogen ion dependences of the product distribution ([Cr]/[Co²⁺]) are shown in Fig. 1 ([Cr²⁺]₀/[Co(III)]₀ \approx 1) and in Fig. 2 ([Cr²⁺]₀/[Co(III)]₀ \approx 2). When [Cr²⁺]₀/[Co(III)]₀ \approx 1, [CrNO²⁺] and [Cr(OH)₂Cr⁴⁺] decrease with an increase in [H⁺], while [Cr³⁺] increases and reaches to ~1. This suggests that CrNO²⁺ and Cr(OH)₂Cr⁴⁺ are produced through a different path from that for Cr³⁺; the latter path must be dependent on [H⁺]. When [Cr²⁺]₀/[Co(III)]₀ increases to 2, [CrNO²⁺] increases with an increase in [H⁺] in contrast with Cr(OH)₂Cr⁴⁺. This means that an additional path, dependent on both [H⁺] and [Cr²⁺]₀/[Co(III)]₀ ~ 1, HNO₂ was always detected. Therefore, it is suggested that HNO₂ is released which reacts with Cr²⁺ to generate Cr³⁺ and CrNO²⁺. The second-order rate constant of the reduction of HNO₂ by Cr²⁺ to form Cr³⁺ and CrNO²⁺ has been reported

Fig. 3. Plot of $[Cr^{3+}]/[Cr(OH)_2Cr^{4+}]$ vs. $[H^+]$ at $[Cr^{2+}]_0/[Co(III)]_0 \simeq 1$.

Fig. 4. Plots of $[Cr]/[Co^{2+}] vs. [Cr^{2+}]_0/[Co(III)]_0$ at $[H^+] = 0.25$ M. (\circ) CrNO²⁺, (\bullet) Cr³⁺; (\bullet) Cr(OH)₂Cr⁴⁺.

to be 4.5×10^3 M⁻¹ s⁻¹ at 25 °C and $\mu = 1$ and is independent of [H⁺] [6]. The aquation of CrONO²⁺ in acidic solutions is fast and the rate constant at 25 °C and $\mu = 1$ is k (s⁻¹) = 2.0[H⁺] + 4.6[H⁺]² [4]. Therefore, HNO₂ must be produced through the aquation of CrONO²⁺ formed by the Cr²⁺ reduction of [CoNO₂(NH₃)₅]²⁺. This is also supported by the result that a quadratic curve with a zero intercept is obtained when [Cr³⁺]/[Cr(OH)₂Cr⁴⁺] is plotted against [H⁺] as shown in Fig. 3 ([Cr³⁺]/ [Cr(OH)₂Cr⁴⁺] = 18[H⁺] + 32[H⁺]²). Figure 4 shows the [Cr²⁺]₀ dependence of the product distribution at [H⁺] = 0.25 M. [Cr(OH)₂Cr⁴⁺] and [CrNO²⁺] increase with an increase in [Cr²⁺]₀, while [Cr³⁺] decreases. This suggests that Cr(OH)₂Cr⁴⁺ and CrNO²⁺ are produced in a [Cr²⁺]₀-dependent path. It is known that the reactions of Cr²⁺ with HNO₃, Tl(III) and O₂ produced Cr(OH)₂Cr⁴⁺ via a Cr(IV) intermediate [5, 6, 13–15]. In the present system, therefore, the Cr(IV) intermediate must be contained. From the above results the following mechanism is suggested:

$$[Co^{III}NO_2(NH_3)_5]^{2+} + Cr^{2+} \longrightarrow Co^{2+} + CrONO^{2+}$$

$$CrONO^{2+} + H^{+} \longrightarrow Cr^{3+} + HNO_{2}$$

$$CrONO^{2+} + Cr^{2+} \longrightarrow Cr(IV) + CrNO^{2+}$$
(6)

$$\operatorname{Cr}(\mathrm{IV}) + \operatorname{Cr}^{2+} \xrightarrow{\operatorname{fast}} \operatorname{Cr}(\mathrm{OH})_2 \operatorname{Cr}^{4+}$$
 (7)

$$HNO_2 + Cr^{2+} \longrightarrow Cr^{3+} + NO$$
(8)

$$NO + Cr^{2+} \xrightarrow{\text{Tast}} CrNO^{2+}$$
(9)

This mechanism contains the inner-sphere electron transfer through a NO₂ bridge followed by competition of the aquation of CrONO²⁺ with the inner-sphere type reduction by Cr²⁺. The first step is the same as that proposed previously [3]. Fraser [3] investigated this reaction over the [H⁺] range between 0.2 M and 0.6 M and at $[Cr^{2+}]_0/[Co(III)]_0 \leq 3$, but did not take acccount of the rapid aquation of CrONO²⁺. In the presence of an equimolar amount of HNO₂ to Co(III), $[Co^{2+}]$ decreased compared with that in the absence of HNO₂ (see Table I), indicating that the rate of reaction (4) is comparable with that of reaction (8).

It has been reported that the formulation Cr^{I} -NO⁺ is more feasible than $Cr^{III}NO^-$ for the oxidation state of $CrNO^{2+}$ [2, 16]. In the formation of Cr(IV) and $CrNO^{2+}$, therefore, the following 2e⁻ reduction may be contained:

$$Cr^{III} \xrightarrow{O} N \xrightarrow{O} Cr^{IV} \xrightarrow{O} + Cr^{I}NO^{+}$$
 (10)

When a solid sample of $[CrONO(NH_3)_5](ClO_4)_2$ was dissolved in a Cr^{2+} solution at $[H^+] = 0.02$ M and $[Cr^{2+}]_0/[Cr(III)]_0 = 1$ in nitrogen gas, $[CrH_2-O(NH_3)_5]^{3+}$, $CrNO^{2+}$ and Cr^{3+} were detected. There was no evidence for the formation of $Cr(OH)_2Cr^{4+}$. This shows that a rapid aquation of $[CrONO-(NH_3)_5]^{2+}$ occurred and that this is followed by the reduction of HNO_2 by Cr^{2+} . This may arise from the fact that the aquation of $[CrONO(NH_3)_5]^{2+}$ is faster than that of $CrONO^{2+}$ [4].

It is interesting to make a comparison with pentaamminenitratocobalt(III), $[CoNO_3(NH_3)_5]^{2+}$, whose system has been examined by Swaddle [5]. Thirtythree percent of the reaction proceeds through the reduction of the central cobalt(III) ion to the cobalt-(II) ion with a formation of $[CrNO_3(H_2O)_5]^{2+}$. $(CrNO_3^{2+})$ when $[Cr^{2+}]_0/[Co(III)]_0 = 1$. The remaining sixty-seven percent of the reaction proceeds through the reduction of the coordinated nitrato ligand to generate $Cr(OH)_2Cr^{4+}$ as one of the products. The reaction of $CrNO_3^{2+}$ with Cr^{2+} also proceeds through the reduction of the coordinated nitrato ligand to generate $Cr(OH)_2Cr^{4+}$, Cr^{3+} and $CrNO^{2+}$. The aquation of $CrNO_3^{2+}$ is sufficiently slow for the reduction by Cr^{2+} to go to completion [5].

In conclusion, the $2e^{-}$ reduction step is contained in the reductions by Cr^{2+} of $CrONO^{2+}$, $CrNO_3^{2+}$, $[CoNO_3(NH_3)_5]^{2+}$ and HNO_3 , but not in those of $[CoNO_2(NH_3)_5]^{2+}$ and HNO_2 .

Acknowledgement

The author would like to thank Ms. Junko Uesako for her experimental assistance.

References

(4)

- 1 E. S. Gould, Acc. Chem. Res., 18, 22 (1985) and refs. therein.
- 2 W. P. Griffith, J. Chem. Soc., 3286 (1963).
- 3 R. T. M. Fraser, J. Chem. Soc., 3641 (1965).
- 4 T. C. Matts and P. Moore, J. Chem. Soc. A, 1997 (1969).
- 5 T. W. Swaddle, J. Am. Chem. Soc., 89, 4338 (1967).
- 6 H. Ogino, K. Tsukahara and N. Tanaka, *Bull. Chem. Soc.* Jpn., 47, 308 (1974).
- 7 M. Linhard, H. Siebert and M. Weigel, Z. Anorg. Allg. Chem., 278, 287 (1955).
- 8 E. L. King and J. A. Neptune, J. Am. Chem. Soc., 77, 3186 (1955).
- 9 K. D. Kopple and R. R. Miller, *Inorg. Chem.*, 2, 1204 (1963).
- 10 C. A. Bunton and G. Stedman, J. Chem. Soc., 2440 (1958).
- 11 R. E. Kitson, Anal. Chem., 22, 664 (1950).
- 12 J. N. Armor and M. Buchbinder, *Inorg. Chem.*, 12, 1086 (1973).
- 13 R. W. Kolaczkowski and R. A. Plane, *Inorg. Chem.*, *3*, 322 (1964).
- 14 M. Ardon and R. A. Plane, J. Am. Chem. Soc., 81, 3197 (1959).
- 15 R. M. Sellers and M. G. Simic, J. Chem. Soc., Chem. Commun., 401 (1975).
- 16 I. Bernal, S. D. Robinson, L. S. Meriwether and G. Wilkinson, Chem. Commun., 571 (1965).