Force constant calculations for tetrakis(tribromophosphine)nickel(0), Ni(PBr₃)₄

Howell G. M. Edwards* and Victor Fawcett

Chemistry and Chemical Technology, University of Bradford, Bradford, West Yorkshire BD7 1DP (UK)

(Received December 24, 1991; revised April 28, 1992)

Abstract

Force constant calculations have been carried out for Ni(PBr₃)₄ using a simple valence force field with interaction constants. The force constant values are compared for the coordinated and free ligand and also with k(Ni–P) stretching in the series of molecules Ni(PX₃)₄ where X=F, Cl, Me. The k(Ni–P) stretching force constant in Ni(PBr₃)₄ is much lower than its corresponding values for other members of the series. This is discussed in relation to the observed experimental instability of the compound and the electronegativities of the substituents X in PX₃.

Introduction

Tetrakis(tribromophosphine)nickel(0), $Ni(PBr_3)_4$, was first prepared some years ago [1] but the vibrational spectrum has only been reported recently [2]. The compound is rather unstable, especially in solution, where decomposition to the parent phosphine occurs, and polarisation data could not be obtained from the Raman spectrum. Despite this, thirteen of the fourteen active vibrational frequencies were assigned although some of these assignments were necessarily rather tentative. Force constant calculations [3] for $Ni(PX_3)_4$ molecules, where X is F, Cl, Br and Me, based only on the three vibrational frequencies of the A1 species, resulted in large discrepancies between observed and calculated wavenumbers except for the case of $Ni(PF_3)_4$. For example, the r.m.s. deviation between observed and calculated wavenumbers for the Ni(PBr₃)₄ species was 11%. It has since been demonstrated [4-6] that molecules of the type $M(PF_3)_4$, are better described using more complicated force fields with interaction constants which utilise all the available vibrational spectroscopic information. In the case of Ni(PCl₃)₄, six primary and five interaction force constants were used [5] to fit fourteen observed wavenumbers with a r.m.s. deviation between the observed and calculated wavenumbers of 2.7%. It was realised [5] that, as the mass of the substituent X in the phosphorus ligand PX₃ increased, then the importance of the stretch-stretch or stretch-bend type interactions also increased.

To complete our studies on the Ni(PX₃)₄ species and to examine the quantitative effect of the electronegativity of X on the metal-phosphorus stretching force constant, we report here the results of force constant calculations on Ni(PBr₃)₄, using all the available vibrational spectroscopic data and a simple valence force field (SVFF) with interaction constants.

Experimental: force constant calculations

The vibrational spectrum of Ni(PBr₃)₄ has been assigned [2] on the basis of T_d molecular symmetry. The vibrational activity is given by

$$\Gamma_{\rm vib} = 3A_1 + 1A_2 + 4E + 4F_1 + 7F_2$$

for which $3A_1 + 4E + 7F_2$ will be Raman active, $7F_2$ will be IR active and $1A_1 + 4F_1$ will be inactive in both the Raman and the IR. For comparison purposes, force constant calculations were made on the free ligand PBr₃, which has a molecular point group $C_{3\nu}$ and

$$\Gamma_{\rm vib} = 2A_1 + 2E$$

all of which are active in both the Raman and the IR.

Description of the setting-up and running of the programmes have already been given in the literature and will not be discussed further here [4, 5]. The molecular parameters which were used in the calculations (Table 1) were taken from the literature [7] for PBr₃ and, in the absence of similar structural data for Ni(PBr₃)₄, were transferred without alteration to this molecule.

^{*}Author to whom correspondence should be addressed.

90

TABLE 1. Bond lengths and angles used in the calculations for PBr_3 and $Ni(PBr_3)_4$

Parameter	Length (Å)	Angle (°)
PBr ₃ P-Br BrP-Br	2.18 [7]	101.5 [7]
Ni(PBr ₃) ₄ ^a Ni–P P–Br	2.12 [8] 2.18 [7]	
Br–P–Br P–Ni–P P–Ni–Br	2.10 [/]	101.5 [7] 109.5 [8] 117.7 [8]

^aBond lengths and angles of NiP₄ skeleton assumed the same as for Ni(PF₃)₄ [8] and coordinated PBr₃ to be the same as the free ligand.

An estimate of the nickel-phosphorus bond distance in Ni(PBr₃)₄ was made on the basis of a summation of the covalent radii which was refined by comparison with the observed [8] r(Ni-P) distance in Ni(PF₃)₄.

Fifty-eight internal coordinates were necessary to generate the full set of forty-five normal vibrations. In the construction of the SVFF force field six primary force constants were used, namely: k_r (P–Br stretching), $k_{\rm R}$ (Ni-P stretching), k_{θ} (BrPBr angle deformation), k_{α} (PNiP angle deformation), k_{β} (NiPBr angle deformation), k_{τ} (PNiPBr torsion). Starting values for k_{τ} , k_{R} and k_{θ} were taken from an earlier calculation in the literature on the A₁ species vibrations only [3]. Since previous values of k_{α} , k_{β} and k_{τ} were not available, reasonable starting values of 0.5 mdyn $Å^{-1}$ rad⁻² were assumed. When a good fit between the calculated and observed wavenumbers was obtained for the A1 species vibrations the potential energy matrix was examined and the sensitivity of the other vibrations to the force constants could be evaluated. Interaction constants were now added and refined until the best fit was obtained with the 13 observed vibrational wavenumbers. The final SVFF comprised the six primary force constants defined above and the interaction constants: $k_{\rm rr}$ (P-Br, P-Br stretch-stretch interaction), k_{rR} (Ni-P, P-Br stretch-stretch interaction), k_{RR} (Ni–P, Ni–P stretch-stretch interaction), $k_{\theta\theta}$ (PBr₂, PBr₂ angle-angle deformation interaction), $k_{\alpha\alpha}$ (NiP₂-NiP₂ angle-angle deformation interaction). Starting values of the interaction force constants were 0.4 mdyn $Å^{-1}$ and 0.3 mdyn $Å^{-1}$ rad⁻² for the stretch-stretch and angle-angle deformation interactions, respectively.

Results

After several iterations the convergence between the observed and calculated wavenumbers was achieved

with best-fit r.m.s. deviations of 0 and 3% for the PBr₃ and Ni(PBr₃)₄ species, respectively. The calculated and observed wavenumbers, the potential energy distributions and the final force constant values for the best-fit refinement are given in Table 2–4. The r.m.s. deviation of $|\Delta \tilde{\nu}_{obs} - \Delta \tilde{\nu}_{calc}|$ in the best-fit calculation is ± 7 cm⁻¹.

The fit between the observed and calculated wavenumbers in Tables 2 and 3 for the PBr₃ ligand and $Ni(PBr_3)_4$ is very good. Examination of the potential energy distributions in Table 4 for Ni(PBr₃)₄ indicates that extensive mixing occurs between the Ni-P stretching, NiPBr deformation and PBr₃ deformation modes. It is clear that the vibrational modes of the PBr₃ ligands coordinated to Ni describe 'breathing' motions in which the P atoms are moving; this is not unexpected in consideration of the relative atomic masses of Ni, P and Br. The descriptions of the vibrational modes $\nu_1 - \nu_{19}$ given in Table 3 for Ni(PBr₃)₄ are, thus, idealised versions of a much more complicated situation in which, for example, six force constants play an important role in the potential energy distributions of the ν_{18} mode with greater than 10% contribution of each force constant to the whole. The interaction constants play an important role, e.g. k_{RR} , which describes NiP-NiP stretch-stretch interaction, has important contributions to the ν_{16} , ν_{18} and ν_{19} modes.

In contrast, however, the stretching and bending modes of the PBr₃ as a free ligand are well characterized by their respective steering force constants and by the $k_{\rm rr}$ and $k_{\theta\theta}$ interaction constants, e.g. the PBr₃ symmetric deformation at 162 cm⁻¹ is 97% pure.

Since the observed Raman and IR spectra [2] for Ni(PBr₃)₄ were assigned on the basis of a comparison with PBr₃ and analogous species such as Ni(PCl₃)₄, without the benefit of polarization data from solution, it was expected that some of the assignments were necessarily tentative. Generally, however, the vibrational assignments for this species are essentially correct within the approximate descriptions of the vibrational modes described in Table 3. In addition, the force-constant calculations have given values for the ν_8 , $\nu_9 - \nu_{12}$ modes for the first time which were not obtainable from the observed spectra.

With regard to the mixing of the modes, the Ni(PBr₃)₄ species behaves in a similar fashion to other members of the Ni(PX₃)₄ series, X = F, Cl, Me, but to a greater extent and this is borne out by a comparison of the results of the present work with the simplified SVFF calculations carried out earlier [3] on the A₁ species modes only. For Ni(PBr₃)₄, the earlier calculations using only three primary-force constants revealed that an instability of the force-field set in around 11% r.m.s. deviation, at which the $k_{\rm R}$ was 1.40 mdyn Å⁻¹ and k_{θ} 0.62 mdyn Å⁻¹ rad⁻², compared with the results of the present work using eleven force constants which

TABLE 2. Potential energy distributions, wavenumbers and force constant values for the vibrations of PBr₃

ν	Symmetry class	Vibration (cm ⁻ⁱ)	al wavenumbers	Force cons	stants		
		Obs.	Calc.	k,	k,	$k_{ m rr}$	$k_{ heta heta}$
ν_1	A ₁	380	380	86.6	20.6	30.7	-37.9
ν_2		162	162	0.1	96.9	0.0	2.9
ν_3	E	400	400	122.3	11.8	-21.7	- 12.4
ν_4		116	116	38.8	120.7	-6.9	- 52.6
Force c	onstant value ^a			2.31	0.24	-0.41	-0.15

^aStretching and stretch-stretch interaction force constants have units of mdyn Å⁻¹, angle deformation and angle-angle deformation interaction force constants have units of mdyn Å⁻¹ rad⁻². 1 mdyn Å⁻¹ = 10² N m⁻¹.

Symmetry class	ν	Approximate description of mode	Ni(PBr ₃) ₄	
			Obs.	Calc.
A ₁	ν_1	PBr symmetric stretch	361	362
	ν_2	PBr ₃ symmetric deformation	149	162
	ν_3	NiP symmetric stretch	78	88
A ₂	$ u_4$	PBr ₃ torsion	^a	-
E	ν_5	PBr asymmetric stretch	419	417
	ν_6	PBr ₃ asymmetric deformation	228	242
	ν_7	PBr ₃ rock	126	125
	ν_8	NiP ₄ deformation	n.o. ^b	73
F ₁	ν_9	PBr asymmetric stretch	_	400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PBr ₃ asymmetric deformation	-	237	
	PBr ₃ rock		73	
	PBr ₃ torsion	-	56	
F ₂	ν_{13}	PBr symmetric stretch	419	421
	ν_{14}	PBr asymmetric stretch	392	393
$ \nu_{14} \\ \nu_{15} \\ \nu_{16} \\ \nu_{17} $	PBr ₃ symmetric deformation	247	259	
	PBr ₃ asymmetric deformation	193	189	
	PBr ₃ rock	168	172	
	$ u_{18}$	NiP asymmetric stretch	126	125
A ₂ E F ₁	ν_{19}	NiP_4 deformation	48	48

TABLE 3. Observed and calculated wavenumbers (cm⁻¹) and assignments [2] for Ni(PBr₃)₄

^aInactive in vibrational spectrum. ^bn.o. = not observed.

included six primary and five interaction force constants, giving values of 1.27 mdyn Å⁻¹ and 0.62 mdyn Å⁻¹ rad⁻², respectively. A comparison of the $k_{\rm R}$ values for the Ni(PBr₃)₄ series is given in Table 5, when the low value of the Ni–P stretching force constant in Ni(PBr₃)₄ concurs with the observed experimental instability of the compound relative to other members of the series, especially Ni(PF₃)₄, which has a $k_{\rm R}$ some 300% larger.

From the results of the present work it is possible to make the following points.

(i) There is an observed decrease in the $k_{\rm R}$ (P-Br) stretching force constant of 33% from the free PBr₃ ligand to its coordination with Ni in Ni(PBr₃)₄. This is consistent with a similar decrease noted for $k_{\rm r}$ from PCl₃ to Ni(PCl₃)₄ [5] and is at variance with the observed

results for the fluoro- and methyl-phosphine analogues, Ni(PF₃)₄ [4] and Ni(PMe₃)₄ [6] in which an increase of 1% and a decrease of 2%, respectively, from free to coordinated ligand k_r s were observed. The similar behaviour of the bromo- and chloro-phosphine analogues is in accord with the comparable electronegativities of Cl and Br in contrast to F and Me.

(ii) The $k_{\rm R}$ (Ni-P) stretching force constant is significantly reduced in the series Ni(PF₃)₄, Ni(PCl₃)₄ and Ni(PBr₃)₄, Table 5, and in Ni(PBr₃)₄ is only 30% of the $k_{\rm R}$ value in Ni(PF₃)₄. This observation may be correlated with the ready decomposition of Ni(PBr₃)₄ and the instability noted in the literature [1, 2]. The observed decrease in the $k_{\rm r}$ (P-Br) stretching force constant in Ni(PBr₃)₄ from free PBr₃ correlates with

2	Calculated	Symmetry	Force c	onstants									
	wavenumber (cm ⁻¹)	class	k _r (PBr)	k _R (NiP)	$k_{ heta}$ (BrPBr)	k_a (PNiP)	k_{eta} (NiPBr)	$k_{ au}$ (PNiPBr)	k _{rr} (PBr–PBr)	k _{rR} (NiPPBr)	k _{RR} (NiP–NiP)	$k_{_{ heta heta}}(\mathrm{BrPBr-BrPBr})$	k _{aa} (PNiP-PNiP)
4	362.	A_1	80.8	12.1	2.9	0.1	6.4	0.0	- 9.6	11.0	4.2	- 8.0	-0.2
72 7	162	A,	31.2	22.3	34.6	1.4	33.2	0.0	-4.5	- 18.4	-3.3	- 7.8	1.2
5	88	A_1	11.0	34.5	25.1	1.9	40.9	0.0	-5.2	-11.7	-0.9	3.3	1.1
24	417	ш	81.1	1.1	12.2	3.4	-7.8	0.0	8.6	0.0	0.0	1.6	-6.3
28	242	Щ	9.0	2.0	2.2	8.3	70.3	1.3	1.1	0.0	0.0	2.7	3.1
4	125	Щ	2.1	1.1	59.0	1.4	7.7	0.9	0.2	0.1	0.1	22.1	5.3
28	73	Щ	0.9	0.0	5.4	55.6	11.3	1.1	0.0	0.0	0.0	2.8	23.0
V13	421	F_2	84.2	0.3	0.8	1.7	4.5	0.1	3.3	0.2	0.1	0.1	4.7
ν_{14}	393	F_2	81.4	11.3	3.1	1.3	5.3	0.0	0.5	0.2	-1.2	-2.0	0.2
ν_{15}	259	F_2	7.5	9.4	5.3	17.2	63.4	1.4	0.8	0.7	-5.4	- 6.8	6.6
ν_{16}	189	F_2	19.4	48.1	38.1	5.8	60.2	1.1	-4.1	-18.3	-21.0	- 30.1	0.9
ν_{17}	172	F_2	2.2	0.1	62.3	1.9	14.3	3.1	0.3	0.1	0.0	14.1	1.7
ν_{18}	125	F_2	22.1	72.0	19.0	2.1	11.7	0.2	-2.2	- 15.4	-11.4	0.9	1.1
ν_{19}	48	F_2	19.7	77.8	15.8	80.3	20.3	6.8	-4.6	- 17.9	- 33.1	34.7	- 30.5
Forc	e constant valu	esª	1.61	1.27	0.62	0.26	0.71	0.02	- 0.63	- 0.32	0.15	-0.20	-0.10
^a Forc	constant valu	les defined in	1 Table 2.										

e,i

TABLE 5. Metal-phosphorus stretching force constants, k_R (mdyn $Å^{-1}$)^a, for Ni(PX₃)₄ species where X = F, Cl, Br, Me

Compound	k _R	
Ni(PF ₃) ₄	3.45	
Ni(PCl ₃) ₄	1.67	
$Ni(PMe_3)_4$	1.62	
Ni(PBr ₃) ₄	1.27	

^a1 mdyn Å⁻¹ $\equiv 10^2$ N m⁻¹.

a reduced $d\Pi$ -p Π backbonding from the nickel atom, and this could also explain the lower value of $k_{\rm R}$ in this compound.

(iii) The PBr₃ deformation force constant, k_{θ} , is increased significantly on coordination in Ni(PBr₃)₄, unlike the situation in the analogous compounds Ni(PCl₃)₄ and Ni(PF₃)₄ where the k_{θ} values remain unchanged on coordination. We ascribe this phenomenon to the increased contributions of nickelphosphorus stretching to the phosphorus-bromine deformation modes (Table 4), e.g. a 22% $k_{\rm R}$ contribution to the potential energy distribution of the ν_2 symmetric deformation mode (A_1 class), compared with a 35% contribution from k_{θ} , the primary force constant for this mode. Changes in k_{θ} on coordination of a phosphine to the metal have been related to a change in umbrellaangle of the PX₃ group [9].

The order of magnitude of the $k_{\rm R}$ (Ni–P) stretching force constant for the compounds

 $Ni(PF_3)_4 > Ni(PCl_3)_4 > Ni(PMe_3)_4 > Ni(PBr_3)_4$

reflects the stability of these compounds, and the ratio of 3× between the $k_{\rm R}$ s of Ni(PF₃)₄ and Ni(PBr₃)₄ is seen in Table 5. This ratio is somewhat smaller than that of $7.7 \times$ which was first proposed in a preliminary study [2] involving the A₁ class modes (ν_1 , ν_2 and ν_3) only and an SVFF approximation with no interaction constants. The importance of the interaction constants in these calculations is well demonstrated in their contributions to the potential energy distributions for $Ni(PBr_3)_4$ in Table 4, and these contributions increase with the size of X in the PX₃ ligands. For example, $k_{\rm rr}$ (PX–PX) stretch–stretch interaction is only 14% of the k_r (PX) stretching force constant for Ni(PF₃)₄ but is 40% for $Ni(PBr_3)_4$.

Although the preparation of Ni(PI₃)₄ has been reported [10], its spectroscopic study has been strictly limited by colour and instability. However, from the results of the present work we would predict that the $k_{\rm R}$ (Ni–P) stretching force constant would be even smaller for $Ni(PI_3)_4$ than for $Ni(PBr_3)_4$ and that the interaction constants would be even more important and larger in value because of the increased steric hindrance and mass of the heavy I atoms in the $Ni(PI_3)_4$ system.

TABLE 4. Potential energy distributions, vibrational modes and force constants of $Ni(PBr_3)_4$

References

- 1 G. Wilkinson, J. Am. Chem. Soc., 73 (1951) 5501.
- 2 H. G. M. Edwards, Spectrochim. Acta, Part A, 42 (1986) 431.
- 3 H. G. M. Edwards, J. Mol. Struct., 156 (1987) 137.
- 4 R. M. Bligh-Smith, H. G. M. Edwards and V. Fawcett, Spectrochim. Acta, Part A, 43 (1987) 1069.
- 5 R. M. Bligh-Smith and H. G. M. Edwards, J. Mol. Struct., 160 (1987) 135.
- 6 R. M. Bligh-Smith, H. G. M. Edwards and V. Fawcett, J. Mol. Struct., 178 (1988) 177.
- 7 R. C. Weast (ed.), *Handbook of Chemistry and Physics*, CRC, Boca Raton, FL, 66th edn., 1986, p. F168.
- 8 J. C. Marriott, J. A. Salthouse, M. J. Ware and J. M. Freeman, Chem. Commun., (1970) 595.
- 9 J. R. Miller, Adv. Inorg. Chem. Radiochem., 4 (1962) 133.
- 10 H. G. M. Edwards, J. Mol. Struct., 158 (1987) 153.