Preparation and Structure of the Hexabromobis(μ -bromo)(μ -hydrido)dimolybdenum(III) Ion, [Mo₂-Br₈H]³⁻

AVI BINO

Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, 91094 Jerusalem, Israel Received February 5, 1985

Dinuclear complexes of molybdenum(III) containing a μ -hydrido ligand with the general formula $[Mo_2X_8H]^{3-}$ (X = Cl, Br, I) were the subject of structural, spectroscopic and theoretical studies [1-9]. These complexes are formed by oxidative addition of HX to the dinuclear molybdenum(II) unit, Mo_2^{4+} . The chloro complex, $[Mo_2Cl_8H]^{3-}$, was thoroughly investigated by X-ray and neutron techniques and the position of the μ -H atom in the dimer was accurately determined [7]. Recently, we have reported the preparation and structure of the iodo complex, $[Mo_2I_8H]^{3-}$ [8]. The cesium salt of the bromo complex Cs₃ [Mo₂Br₈H], 1, was prepared several years ago and its structure was determined by X-ray crystallography [2]. The dimeric ion in this compound was constrained to occupy, in a disordered fashion, a position of D_{3h} symmetry (6m2 site), thus obscuring important structural details. The real symmetry of the $[Mo_2X_8H]^{3-1}$ ion is C_{2v} , as found in other compounds were no disorder exists in the crystal [4-8]. The Mo-Mo distance in Cs₃[Mo₂Br₈H], 2.439(7) Å, deviates significantly from the range of 2.377(7) - 2.408(2)A previously found for the chloro and iodo complexes [6, 8].

We describe here the preparation and structure of the tetramethylammonium salt of a bromo complex $[Mo_2Br_8H]^{3-}$ in which the dimer is not disordered.

Experimental

Crystals of $(H_7O_3)[(CH_3)_4N]_2[MO_2Br_8H]$, 2, were obtained by dissolving $MO_2(O_2CCH_3)_4$ (0.25 g) and Me_4NBr (0.7 g) in 20 ml of 8 M HBr at 70 °C, followed by slow evaporation of the solution under a stream of nitrogen. Dark yellow-brown crystals were deposited after 48 h.

The crystals are orthorhombic, space-group $P2_12_12_1$ with a = 25.437(3) Å, b = 10.291(1) Å, c = 10.681(1) Å, V = 2796(1) Å³ and Z = 4.

A total of 2072 reflections were collected in the range of $3^{\circ} < 2\theta < 45^{\circ}$, of which 1411 were found

TABLE I. Positional Parameters and e.s.d.s for (H_7O_3) - $(Me_4N)[Mo_2Br_8H]$.^a

Atom	x	У	Z
Mo(1)	-0.6570(1)	0.2175(3)	-0.7033(3)
Mo(2)	-0.6074(1)	-0.2586(4)	-0.5181(3)
Br(1)	-0.5868(2)	-0.4065(4)	-0.7133(4)
Br(2)	-0.5806(2)	-0.0563(4)	-0.6519(5)
Br(3)	-0.7229(2)	-0.0334(4)	-0.6838(5)
Br(4)	-0.7292(1)	-0.3820(4)	-0.7512(4)
Br(5)	-0.6404(2)	-0.1665(5)	-0.9416(4)
Br(6)	-0.6376(2)	-0.4605(4)	-0.3959(4)
Br(7)	-0.6322(2)	-0.1162(4)	-0.3342(4)
Br(8)	-0.5074(1)	-0.2782(5)	-0.4564(5)
OW(1)	-0.298(1)	-0.168(3)	-0.929(3)
OW(2)	-0.305(1)	-0.340(3)	-1.088(3)
OW(3)	-0.204(1)	-0.162(4)	-0.861(3)
N(1)	-0.990(1)	-0.252(3)	-0.942(3)
N(2)	-0.845(1)	-0.269(4)	-0.459(3)
C(10)	-0.937(2)	-0.210(5)	-0.881(5)
C(11)	-0.984(2)	-0.270(5)	-1.076(5)
C(12)	-1.026(2)	-0.139(5)	-0.921(4)
C(13)	-1.012(2)	-0.368(4)	-0.879(4)
C(20)	-0.854(2)	-0.178(4)	-0.576(4)
C(21)	-0.859(2)	-0.404(4)	0.498(4)
C(22)	-0.876(2)	-0.238(5)	-0.350(5)
C(23)	-0.788(2)	-0.269(5)	-0.426(4)

^ae.s.d.s. in the least significant digits are shown in parentheses.

to have $I > 3\sigma(I)$ and were therefore used in refining of the structural parameters. The structure was refined by least-squares methods to a conventional *R* factor of 5.60%.

Results and Discussion

Table I presents the positional parameters of $(H_7-O_3)(Me_4N)_2[Mo_2Br_8H]$, and the important bond distances and angles are given in Table II. The

Fig. 1. The structure of $[Mo_2Br_8H]^{3-}$. Atoms are represented by their ellipsoids of vibration at the 50% probability level. The μ -H atom was not located.

© Elsevier Sequoia/Printed in Switzerland

Lengths			
Mo(1)Mo(2)	2.384(4)	Mo(2)-Br(2)	2.616(5)
Mo(1)-Br(1)	2.644(5)	Mo(2)-Br(6)	2.571(5)
Mo(1)-Br(2)	2.615(5)	Mo(2)-Br(7)	2.529(5)
Mo(1)-Br(3)	2.538(5)	Mo(2)-Br(8)	2.637(4)
Mo(1)-Br(4)	2.548(5)	OW(1)-OW(2)	2.45(4)
Mo(1)-Br(5)	2.633(5)	OW(1)-OW(3)	2.50(4)
Mo(2)-Br(1)	2.635(5)		
Angles			
Br(1) - Mo(1) - Br(2)	88.4(2)	Br(1)-Mo(2)-Br(7)	177.1(2)
Br(1) - Mo(1) - Br(3)	177.4(2)	Br(1)-Mo(2)-Br(8)	87.8(2)
Br(1)-Mo(1)-Br(4)	89.4(2)	Br(2)-Mo(2)-Br(6)	176.9(2)
Br(1) - Mo(1) - Br(5)	89.9(2)	Br(2)-Mo(2)-Br(7)	91.6(2)
Br(2) - Mo(1) - Br(3)	90.0(2)	Br(2)-Mo(2)-Br(8)	86.9(2)
Br(2)-Mo(1)-Br(4)	177.8(2)	Br(6)-Mo(2)-Br(7)	90.0(2)
Br(2) - Mo(1) - Br(5)	87.5(2)	Br(6)-Mo(2)-Br(8)	95.7(2)
Br(3) - Mo(1) - Br(4)	92.1(2)	Br(7)-Mo(2)-Br(8)	95.2(2)
Br(3) - Mo(1) - Br(5)	92.1(2)	Mo(1)-Br(1)-Mo(2)	53.7(1)
Br(4) - Mo(1) - Br(5)	93.1(2)	Mo(1)-Br(2)-Mo(2)	54.2(1)
Br(1)-Mo(2)-Br(2)	88.6(2)	OW(2) - OW(1) - OW(3)	107(1)
Br(1) - Mo(2) - Br(6)	89.7(2)		

TABLE II. Important Bond Lengths (A) and Angles (deg) for (H7O3)(Me4N)[Mo2Br8H].

TABLE III. Dimensions of the $[Mo_2Br_8H]^{3-}$ Anion in the Cs⁺ and Me₄N⁺ Salts.^a

	Cs ₃ [Mo ₂ Br ₈ H]	$(H_7O_3)(Me_4N)_2$ - [Mo_2Br_8H], 2
МоМо (А)	2.439(7)	2.384(4)
Mo-Br _t (Å)	2.554(3)	2.546[9] ^b 2.635[2] ^c
Mo-Br _b (Å)	2.672(5)	2.627[7]

^aNumbers in brackets are grand average values obtained by the expression $[(\Sigma \Delta i^2)/n(n-1)]^{1/2}$. ^bBonds *trans* to μ -Br. ^cBonds *trans* to μ -H.

dinuclear anion is shown in Fig. 1. With Z = 4 in space group $P2_12_12_1$ there is no crystallographic symmetry imposed upon the dimer. The overall symmetry of the $[Mo_2Br_8H]^{3-}$ ion is nearly C_{2v} . There are three different sets of Mo-Br distances with some significant scattering within the sets. The grand average values for the various sets for $[Mo_2-Br_8H]^{3-}$ in the cesium and Me_4N^+ salts are presented in Table III.

The Mo-Br bond distances are in the order that was previously found for other $[Mo_2X_8H]^{3-}$ ions (X = Cl, I), namely $Mo-Br_{t,H} > Mo-Br_b > Mo Br_{t,Br}$. The difference of *ca*. 0.09 Å between Mo- $Br_{t,H}$ and $Mo-Br_{t,Br}$ is due to the greater *trans* effect of the μ -H relatively to μ -Br. The Mo–Mo distance, 2.384(4) Å, falls within the range of 2.377(7) Å and 2.408(2) Å found in $[Mo_2-Cl_8H]^{3-}$ and $[Mo_2I_8H]^{3-}$ respectively. The variation in this distance when two μ -Cl atoms are replaced with larger μ -Br or μ -I is relatively small. This fact is predicted by theoretical studies that suggest that the Mo–H–Mo is a three-center 4-electron system with a strong interaction. The elimination of this interaction by replacing the μ -H atom with μ -Br results in a dramatic change in the Mo–Mo separation, from 2.384(4) Å in $[Mo_2Br_8H]^{3-}$ to 2.816(1) Å in $[Mo_2Br_8]^{3-}$ [10].

References

- 1 M. J. Bennet, J. V. Brencic and F. A. Cotton, *Inorg. Chem.*, 8, 1060 (1968).
- 2 F. A. Cotton, B. A. Frenz and Z. C. Mester, Acta Crystallogr., Sect. B:, B29, 1515 (1973).
- 3 F. A. Cotton and B. J. Kalbacher, *Inorg. Chem.*, 15, 522 (1976).
- 4 A. Bino and F. A. Cotton, Angew. Chem., Int. Ed. Engl., 18, 322 (1979).
- 5 A. Bino and F. A. Cotton, J. Am. Chem. Soc., 101, 4150 (1979).
- 6 A. Bino, B. E. Bursten, F. A. Cotton and A. Fang, *Inorg. Chem.*, 21, 3755 (1982).
- 7 F. A. Cotton, P. C. W. Leung, W. J. Roth, A. J Schultz and J. M. Williams, J. Am. Chem. Soc., 106, 117 (1984).
- 8 A. Bino and S. Luski, *Inorg. Chim. Acta*, 86, L35 (1984).
 9 V. Katovic and R. E. McCarley, *Inorg. Chem.*, 17, 1268 (1978).
- 10 R. Saillant, R. B. Jackson, W. E. Streib, K. Folting and R. A. D. Wentworth, *Inorg. Chem.*, 10, 1453 (1971).