Crystal Structure of the Trichlorotris(1,3-dimethylimidazoline-2-thione)platinum(IV) Cation: the Product of a Novel Oxidation—Addition Reaction

LINDA M. BUTLER, JAMES R. CREIGHTON, ERIC S. RAPER* and W. R. TOMLINSON

School of Chemical and Life Sciences, Newcastle-upon-Tyne Polytechnic, Newcastle-upon-Tyne NE1 8ST, U.K.

Received June 4, 1985

Reactions between platinum(II) salts and various heterocyclic thione molecules occur in neutral, acid and alkaline media [1]. With imidazolethiones complex formation occurs in acid and neutral media with the production, mostly, of compounds of stoichiometry: $[Pt(LH)_4]Cl_2$ and $[Pt(LH)_2Cl_2]$, (LH= benzimidazoline-2-thione [2], imidazoline-2-thione [2], 1-methylimidazoline-2-thione [3], 1,3-dimethylimidazoline-2-thione [2] and imidazolidine-2-thione [4]. Mixed valence complexes containing platinum-(II) and (IV) have also been reported for imidazolidine-2-thione [5].

In alkaline media, deprotonation of the heterocyclic-thione occurs with the production of the corresponding thionate anion [1]. Polymeric complexes $[PtL_2]_n$, are reported for benzimidazole-2thionate [6] and 1-methylimidazoline-2-thionate [7]. Bis-(pyrimidine-2-thionate)platinum(II) reacts with the tetraiodoplatinate(II) ion in methanol producing $[Pt(pyrimidine-2-thionate)_2I_2]_2$. This dimeric compound contains platinum(III), (Pt-Pt, 2.554(1) Å), four bridging pyrimidine-2-thionates and terminal iodide [8].

Stoichiometrically controlled reactions between platinum dichloride or potassium tetrachloropla-1,3-dimethylimidazoline-2-thione tinate(II) and (dmimt) in molar hydrochloric acid produce Pt-(dmimt)₄Cl₂·4H₂O and Pt(dmimt)₂Cl₂·2H₂O, respectively. Compound stoichiometries have been confirmed by chemical (C, H, N) and thermal analysis. Crystal structure analysis of the 4:1 (ligand: metal) complex revealed [Pt(dmimt)₄]²⁺ cations, with sulphur donor ligands and square-planar PtS₄ coordination, together with ionic chlorides and lattice water molecules [2]. Upon turning our attention to the crystallography of the 2:1 (ligand: metal) complex we obtained surprising results. This report is largely concerned with the crystal structure analysis of a single crystal which was isolated from the preparation of $[Pt(dmimt)_2Cl_2] \cdot 2H_2O$.

Fig. 1. Perspective diagram of the $[Pt(dmimt)_3Cl_3]^+$ cation. Bond lengths: Pt-S, range 2.356(2)-2.364(3), mean 2.361; Pt-Cl, range 2.356(4)-2.362(3), mean 2.359 A; angles: Cl-Pt-Cl range 88.2(1)-89.7(1), mean 88.8; S-Pt-S range 84.0(1)-85.5(1), mean 84.7; Cl-Pt-S ranges 92.5(1)-93.7(1) and 125.9(1)-178.1(1), means 93.2 and 177.1°.

Crystal Data

 $C_{15}H_{24}N_6S_3PtCl_4 \cdot 2H_2O$, $M_r = 757$ triclinic, a = 8.858(4), b = 13.577(2), c = 13.576(3) Å, $\alpha = 117.08(2)$, $\beta = 94.92(3)$, $\gamma = 92.53(3)^\circ$, U = 1442.0 Å³, space group $P\bar{1}$, Z = 2. X-ray diffraction data was collected on an Enraf-Nonius diffractometer using a $\omega - 2\theta$ scan method with graphite monochromatised Mo K α radiation ($\lambda = 0.71069$ Å). A total of 5065 independent reflections were measured of which 920 were suppressed. The structure was solved by Patterson and Fourier methods and refined with full-matrix least-squares methods with anisotropic temperature factors applied to the non-hydrogen atoms. All H atom positions were fixed by the program (C-H = 1.08 Å).

The R agreement index is currently 0.0404 with unit weights. All calculations were performed on the NUMAC IBM 370/168 computer at the University of Newcastle-upon-Tyne; SHELX [9] and related programs were used throughout the calculations.

The crystal structure revealed a complex of formula, $[Pt(dmimt)_3Cl_3]Cl \cdot 2H_2O$, with the complex cation in the form of the confacial isomer. We suggest, in view of the analytical data obtained for the bulk product (see below), that *fac*- $[Pt(dmimt)_3$ - $Cl_3]Cl \cdot 2H_2O$ is a by-product of the reaction between the tetrachloroplatinate(II) ion and dmimt in molar hydrochloric acid. *Anal.* Calc. (found) for Pt- $(dmimt)_2Cl_2 \cdot 2H_2O$: C, 21.5(21.64); H, 2.9(3.11); N, 10.0(10.30); Pt, 34.9(36.0).

The production of fac-[Pt(dmimt)₃Cl₃]Cl·2H₂O may be envisaged to result from *trans* addition of chloride ion and dmimt to [Pt(dmimt)₂Cl₂] coupled with aerial oxidation of the metal. Two possibilities

^{*}Author to whom correspondence should be addressed.

are illustrated in Scheme 1 where it can be seen that *trans* addition should produce the *mer*-isomer from *trans*-[Pt(dmimt)₂Cl₂] and the *fac*-isomer from *cis*-[Pt(dmimt)₂Cl₂] [10]. Alternatively, a five coordinate intermediate is possible which could rearrange to give the most thermodynamically favoured product.

Acknowledgements

We are grateful to Dr. M. B. Hursthouse of the Department of Chemistry, Queen Mary College, University of London, and SERC for the provision of X-ray intensity data.

References

- 1 E. S. Raper, Coord. Chem. Rev., 61, 115 (1985).
- 2 L. M. Butler, J. R. Creighton, E. S. Raper and W. R. Tomlinson, unpublished work.
- M. E. O'Neill, E. S. Raper, J. A. Daniels and I. W. Nowell, Inorg. Chim. Acta, 66, 79 (1982).
 P. Castan and J. P. Laurent, Transition Met. Chem.,
- 4 P. Castan and J. P. Laurent, *Transition Met. Chem.*, 5, 154 (1980).
- 5 J. M. Bret, P. Castan and J. P. Laurent, *Inorg. Chim.* Acta, 51, 103 (1981).
- 6 T. Yoshida, Bull. Chem. Soc. Jpn., 53, 1449 (1980).
- 7 J. Dehand and J. Jordanov, Inorg. Chim. Acta, 17, 37 (1976).
- 8 D. M. L. Goodgame, R. W. Rollins and A. C. Skapski, Inorg. Chim. Acta, 83, L11 (1984).
- 9 G. M. Sheldrick, 'SHELX 76', programs for crystal structure determination, University of Cambridge, 1976.
- 10 B. Douglas, D. H. McDaniel and J. J. Alexander (eds.), 'Concepts and Models of Inorganic Chemistry', 2nd edn., Wiley, New York, 1983, p. 373.