Estimation using MNDO of Skeletal Bending Frequencies in Linear and Quasi-linear Silyl Compounds

C. GLIDEWELL

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.

Received July 8, 1985

Electron diffraction studies of a number of silvl pseudohalides, including H₃SiNCO [1], H₃SiNCS [1], F_3 SiNCO [2], and H_3 SiNCNSiH₃ [3] have suggested that these molecules are characterised by very low skeletal bending frequencies $\delta(SiNC)$: similar conclusions for these, and related silvl pseudohalides, have been drawn from microwave studies [4-6], and from vibrational spectroscopy [7-10]. The suggestion has been made [1] that most silicon pseudohalides of types R₃SiNCO, R₃SiNCS, and R₃SiNCNSiR₃, as well as species such as Si-(NCO)₄ [11], probably contain SiNCX groups which are either linear at the equilibrium configuration or have only a very small barrier at linearity, and additionally exhibit skeletal bending modes $\delta(SiNC)$ which are of low frequency and high amplitude. The substituted oxo compounds $(R_3Si)_2O$ appear to be similar [12, 13].

With few exceptions [1, 2, 6, 9, 10] detailed descriptions of the skeletal motions of these linear or quasi-linear systems [14] have not been achieved, although estimates of the bending frequencies have been made in a number of cases [1, 2, 4, 5, 8, 15]. We recently reported [16] the results of an SCF

study, using the MNDO [17] method, of the equilibrium structures of a wide range of substituted methyl and silyl pseudohalides: in the present communication, we report the direct calculation of the skeletal vibrational frequencies for a range of substituted silyl isocyanates, isothiocyanates and carbodiimides.

Calculations were made using the MNDO method [17], as incorporated in the MOPAC program system [18], with the published and atomic parameters [19-21]. No *d* functions were employed: it has been shown [22, 23] that such functions are not necessary for the adequate description of most of the properties of molecular silicon compounds.

The vibrational spectra of H_3SiNCS [9], and of Cl_3SiNCO and Cl_3SiNCS [8] have been studied in great detail, and in Table I we give as examples, a comparison of the calculated fundamental vibrational frequencies and those observed in the vapour phase for H_3SiNCS and Cl_3SiNCS . In Cl_3SiNCS $\delta(SiNC)$, ν_{10} , was not observed directly, but its magnitude was inferred from combination bands. With the notable exception of $\nu_{as}(NCS)$ which for both molecules is calculated to be too large, the calculated frequencies are in reasonable accord with those observed, and the calculated atomic motions broadly confirm the published assignments [8, 9].

For each of the molecules R_3SiNCO and R_3SiNCS (R = H, F, Cl, CH₃) there is a doubly degenerate skeletal bending mode, described approximately as $\delta(SiNC)$, of *e* symmetry in C_{3v} , which is calculated in every case (Table II) to occur at very low frequency.

The second skeletal bend, δ (NCX) is calculated to lie in the range 491–511 cm⁻¹ for R₃SiNCO, and in the range 455–474 cm⁻¹ for R₃SiNCS. In marked contrast to the very low values calculated for δ (Si-

TABLE I. Comparison of Observed and Calculated Fundamental Frequencies in H₃SiNCS and Cl₃SiNCS

	H ₃ SiNCS			Cl ₃ SiNCS			
	Observed frequency (cm ⁻¹) ^a	Calculated frequency (cm ⁻¹)	Approximate description	Observed frequency (cm ⁻¹) ^b	Calculated frequency (cm ⁻¹)	Approximate description	
a ₁ modes	2206	2262	ν(SiH)	2092	2322	$\nu_{as}(NCS)$	
	2065	2383	$\nu_{as}(NCS)$	1072	1185	$\nu_{s}(NCS)$	
	1036	1150	$\nu_{\rm s}(\rm NCS)$	512	623	$\nu(SiN)$	
	951	965	δ (SiH ₃)	410	409	ν (SiCl)	
	492	546	$\nu(SiN)$	210	170	$\delta(SiCl_3)$	
e modes	2207	2269	$\nu(SiH)$	623	639	v(SiCl)	
	950	930	$\delta(SiH_3)$	469	471	δ(NCS)	
	707	734	$\rho(SiH_3)$	264	252	$\rho(SiCl_3)$	
	478	455	$\delta(NCS)$	170	139	$\delta(SiCl_3)$	
	66	119	δ (SiNC)	Not observed	56	δ(SiNC)	

^aRef. 9 ^bRef. 8.

R ₃ SiNCO				R ₃ SiNCS				
Compound	ν (calc.) (cm ⁻¹)	ν (obs.) (cm ⁻¹)	Reference	Compound	ν (calc.) (cm ⁻¹)	ν (obs.) (cm ⁻¹)	Reference	
H ₃ SiNCO	83	20-69 ^a	1, 5, 6, 15	H ₃ SiNCS	119	66 ^d	9	
F ₃ SiNCO	72	97 ^b	2	FaSiNCS	80	_		
Cl ₃ SiNCO	57	29c	8	Cl ₃ SiNCS	56	24 [°]	8	
Me ₃ SiNCO	55	37 ^d	10	Me ₃ SiNCS	73	~45 ^d	10	

TABLE II. Calculated Skeletal Bending Frequencies & (SiNC) in Sily! Pseudohalides

 ${}^{a}\delta$ (SiNC) has not been directly observed: 20-69 cm⁻¹ represents the overall range of estimates derived from various experimental observations. ${}^{b}Estimated$ from electron-diffraction potential function. ${}^{c}Estimated$ from combination bands.

NC) in R₃SiNCO and R₃SiNCS, in the fulminates H₃SiCNO and H₃SiCNS, the values calculated for δ (SiCN) are much higher, 202 cm⁻¹ and 160 cm⁻¹ respectively, with δ (CNO), 421 cm⁻¹ and δ (CNS), 418 cm⁻¹.

A carbodiimide $R_3MNCNMR_3$ having a linear MNCNM skeleton will exhibit two $\delta(MNC)$ modes, of e_g and e_u symmetry in D_{3d} , or e' and e'' in D_{3h} : the mode $\delta(NCN)$ has e_u symmetry in D_{3d} or e', symmetry in D_{3d} . In SiF₃NCNSiF₃ and SiCl₃NCN-SiCl₃, the $e_u \delta(SiNC)$ modes occur at 30 cm⁻¹ and 25 cm⁻¹ respectively, and the e_g modes at 69 cm⁻¹ and 53 cm⁻¹ respectively. The skeletal bend $\delta(NCN)$ is calculated to occur at 496 cm⁻¹ in SiF₃NCNSiF₃ and at 495 cm⁻¹ in SiCl₃NCNSiCl₃.

Finally, we have calculated the skeletal bending frequency, $\delta(\text{SiOSi})$, in three ethers $(R_3\text{Si})_2\text{O}$ for R = H, F, and Cl. The frequencies calculated are 72 cm⁻¹, 70 cm⁻¹, and 37 cm⁻¹, respectively. The observed band maximum in $(\text{SiH}_3)_2\text{O}$ occurs at around 70 cm⁻¹ [12, 24, 25], and in $(\text{SiF}_3)_2\text{O}$ and $(\text{SiCl}_3)_2\text{O}$ the bending frequencies have been measured as 85 cm⁻¹ [26] and 63 cm⁻¹ [27] respectively. Again the MNDO calculations within an (s,p) basis set reveal extremely low skeletal bending frequencies.

In every example, the occurrence of a very low frequency skeletal bending mode, perhaps the most characteristic common feature of these molecules, is reproduced by the calculations.

References

- 1 C. Glidewell, A. G. Robiette and G. M. Sheldrick, *Chem. Phys. Lett.*, 16, 526 (1972).
- 2 W. C. Airey, C. Glidewell, A. G. Robiette and G. M. Sheldrick, J. Mol. Struct., 8, 435 (1971).
- 3 C. Glidewell and A. G. Robiette, Chem. Phys. Lett., 28, 290 (1974).

- 4 D. R. Jenkins, R. Kewley and T. M. Sugden, *Trans. Faraday Soc.*, 58, 1284 (1962).
- 5 M. C. L. Gerry, J. C. Thompson and T. M. Sugden, Nature (London), 211, 846 (1966).
- 6 J. A. Duckett, A. G. Robiette and I. M. Mills, J. Mol. Spectrosc., 62, 34 (1976).
- 7 E. A. V. Ebsworth, R. Mould, R. Taylor, G. R. Wilkinson and L. A. Woodward, *Trans. Faraday Soc.*, 58, 1069 (1962).
- 8 D. F. Koster, Spectrochim. Acta, Part A:, 24, 395 (1968).
- 9 J. R. Durig, K. S. Kalasinsky and V. F. Kalasinsky, J. Phys. Chem., 82, 438 (1978).
- 10 J. R. Durig, J. F. Sullivan, A. W. Cox, Jr. and B. J. Streusand, Spectrochim. Acta, Part A:, 34, 719 (1978).
- 11 K. E. Hjortaas, Acta Chem. Scand., 21, 1381 (1967).
- 12 J. R. Durig, M. J. Flanagan and V. F. Kalasinsky, J. Chem. Phys., 66, 2775 (1977).
- 13 C. Glidewell and D. C. Liles, J. Organomet. Chem., 212, 291 (1981).
- 14 W. R. Thorson and I. Nakagawa, J. Chem. Phys., 33, 994 (1960).
- 15 S. J. Cyvin, J. Brunvoll and A. G. Robiette, *Chem. Phys. Lett.*, 11, 263 (1971).
- 16 C. Glidewell and H. D. Holden, J. Mol. Struct., 89, 325 (1982).
- 17 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- 18 J. J. P. Stewart, QCPE Bull., 3, 43 (1983).
- 19 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- 20 M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., 100, 58 (1978).
- 21 M. J. S. Dewar, H. S. Rzepa and M. L. McKee, J. Am. Chem. Soc., 100, 3607 (1978).
- 22 C. Glidewell and C. Thomson, J. Comput. Chem., 3, 495 (1982).
- 23 C. Glidewell and C. Thomson, J. Comput. Chem., 4, 9 (1983).
- 24 J. R. Aronson, R. C. Lord and D. W. Robinson, J. Chem. Phys., 33, 1004 (1960).
- 25 D. W. Robinson, W. J. Lafferty, J. R. Aronson, J. R. Durig and R. C. Lord, J. Chem. Phys., 35, 2245 (1961).
- 26 J. R. Durig, V. F. Kalasinsky and M. J. Flanagan, *Inorg. Chem.*, 14, 2839 (1975).
- 27 J. R. Durig, M. J. Flanagan and V. F. Kalasinsky, J. Mol. Struct., 27, 241 (1975).