Carbonyl Trichlorostannate Complexes of Platinum: Chemistry and ¹¹⁹Sn, ¹⁹⁵Pt, and ¹³C NMR Spectroscopy

IAN R. HERBERT, PAUL S. PREGOSIN and H. RUEGGER

Laboratorium für Anorganische Chemie, ETH Zürich, Universitätstrasse 6, CH-8092 Zurich, Switzerland Received June 1, 1985

Abstract

The reactions of the carbonyl anion $[PtCl_3(CO)]^$ with $SnCl_2$ in the presence of CO in both methylene chloride and acetone are reported. In the former solvent, only Pt^{II}-SnCl₃ species are formed. These have been identified by ¹³C, ¹¹⁹Sn and ¹⁹⁵Pt NMR measurements as cis-[PtCl₂(SnCl₃)(CO)]⁻, (I), trans- $[PtCl(SnCl_3)_2(CO)]^-$, (II), and $[Pt(SnCl_3)_4(CO)]^{2-}$, (III). Salts of these complexes have been isolated. In contrast, when acetone is the solvent, reduction of the platinum occurs to give two new complexes. On the basis of NMR measurements, we assign one of these as the Pt^{I} dimer $[Pt_2(SnCl_3)_4(CO)_2]^{2-}$, (IV), and the other as a platinum triangle (VI) containing terminal CO ligands and two types of Sn ligand. The Pt^{II} compound (IV) can also be generated by treating a CH₂Cl₂ solution of trans-[PtCl(SnCl₃)₂-(CO)]⁻, (II), with dihydrogen. NMR spectroscopic data, including those from measurements on samples of the complexes containing ¹³C-enriched CO, are reported and discussed.

Introduction

Carbonyl complexes of platinum(II) are important intermediates in the hydroformylation reaction catalysed by platinum salts in conjunction with tin(II) chloride [1]. Previous studies have shown that: (a) a wide variety of polytrichlorostannate platinum complexes are stable [2] and (b) the SnCl₃ ligand plays various roles in the catalysis [3]. Specifically, model studies suggest that the SnCl₃ is displaced by CO when phosphine ligands are present [4] and that cationic platinum(II) species are important intermediates [5].

We considered it useful to study the chemistry of platinum(II) with CO and $SnCl_3$ ligands since this mixture forms a hydroformylation catalyst which has not yet been investigated. We report here the preparation and multinuclear NMR spectroscopy of a series of platinum complexes containing both CO and $SnCl_3$, as well as reduction of the metal to yield novel dimeric and cluster compounds.

Experimental

NMR spectra were measured on solutions contained in 10 mm tubes using a Bruker WM-250 spectrometer. The ¹³C, ¹¹⁹Sn, and ¹⁹⁵Pt measurements were performed without proton decoupling using pulse angles of ca. 30, 60, and 75°, respectively. Values of $\delta(^{195}\text{Pt})$ and $\delta(^{119}\text{Sn})$ are quoted in ppm relative to external Na₂ [PtCl₆] and SnMe₄, respectively, and are accurate to 0.5 ppm. Carbon-13 chemical shifts were measured relative to internal CH₂Cl₂ or (CH₃)₂CO and then corrected to TMS using 54.02 and 30.43 ppm, respectively, and are accurate to within ±0.1 ppm. Coupling constants involving ¹³C are accurate to ±2 Hz; all other coupling constants have an accuracy of ±12 Hz. Computer simulations of NMR spectra were performed using the program PANIC supplied by the Bruker organization. The sub-spectra due to individual isotopomers were simulated and then stored as experimental files. These were then added together in appropriate ratios within the NMR program to give the full simulation.

The complex $[NBu^{n}_{4}][PtCl_{3}(CO)]$ was prepared as in reference [6]. The salt $[PPh_{4}]_{2}[PtCl_{4}]$ was prepared by treating an aqueous solution of K₂- $[PtCl_{4}]$ with 2 equivalents of $[PPh_{4}]Cl$ in water to give a pale-pink solid which was collected, washed with water, and dried.

$[NBu^{n}_{4}][PtCl_{2}(SnCl_{3})(CO)]$

A CH₂Cl₂ solution (2 ml) of $[NBu^n_4]$ [PtCl₃(CO)] (114 mg, 0.2 mmol) was stirred over SnCl₂ (38 mg, 0.2 mmol) until all the solid had dissolved (*ca.* 5 min). Addition of diethyl ether to the pale-orange solution, followed by cooling to -15 °C, led to the formation of yellow-orange crystals, which were collected and dried *in vacuo*. Yield 107 mg (70%). *Anal.* Found: C, 26.99; H, 4.50; N, 1.95; Cl, 23.52. Calc.: C, 26.81; H, 4.77; N, 1.84; Cl, 23.27%.

$[NBu^{n}_{4}][PtCl(SnCl_{3})_{2}(CO)]$

A CH₂Cl₂ solution (5 ml) of [NBuⁿ₄] [PtCl₃(CO)] (400 mg, 0.7 mmol) was stirred over SnCl₂ (265 mg, 1.4 mmol under an atmosphere of CO for *ca*. 15 min until the solid had dissolved. Evaporation of the solvent using a gentle stream of CO led to a yellow--orange solid which was dried *in vacuo*. Yield quantitative. *Anal.* Found: C, 21.54; H, 3.81; N, 1.47; Cl, 26.14. Calc.: C, 21.47; H, 3.82; N, 1.47; Cl, 26.09%.

$[PPh_4]_2[Pt(SnCl_3)_4(CO)]$

This complex was prepared by stirring a mixture of $[PPh_4]_2[PtCl_4]$ (508 mg, 0.5 mmol) and SnCl₂ (379 mg, 2 mmol) in CH₂Cl₂ (10 ml) under an atmosphere of CO for 1 h. The solvent was then evaporated under a stream of CO gas to leave an orange solid, which was dried *in vacuo*. Yield quantitative. *Anal.* Found: C, 31.94; H, 2.25; Cl, 25.05. Calc.: C, 32.66; H, 2.24; Cl, 23.61%.

Reaction of [NBuⁿ₄][PtCl(SnCl₃)₂(CO)] with Dihydrogen

A CH_2Cl_2 solution of $[NBu^n_4][PtCl(SnCl_3)_2(CO)]$ was treated with H_2 for 15 min during which time the solution became orange—red in colour. The exit gases were passed through a methanol solution of neutral red made basic with sodium methoxide. As the reaction proceeded, this indicator solution turned from yellow to red due to the production of H^* . The NMR spectra of the reaction solution show the presence of complex (IV).

Reaction of $PtCl_2$ with $SnCl_2/Cl^-$ and CO

PtCl₂ (133 mg, 0.5 mmol), SnCl₂ (237 mg, 1.25 mmol) and NEt₄Cl (206 mg, 1.25 mmol) were mixed together as solids in a reaction vessel filled with CO. Acetone (3 ml) was introduced and the mixture stirred for *ca*. 0.5 h, to give a bright red liquor and an off-white precipitate. Recrystallisation of the precipitate from nitromethane gave colourless crystals with analysis appropriate for [NEt₄]₂ [SnCl₆]. *Anal.* Found: C, 32.08; H, 6.72; N, 4.85; Cl, 35.59. Calc.: C, 32.46; H, 6.82; N, 4.73; Cl, 35.93%. NMR measurements on the red liquor showed it to contain a mixture of approximately 85% [Pt₃(SnCl_x)_y-(CO)₃]²⁻⁻, (VI), and 15% [Pt(SnCl₃)₅]³⁻⁻. Addition of CH₂Cl₂ and cooling the solution to -15 °C afforded bright-red crystals of (V) as its [NEt₄]⁺ salt. Yield 255 mg.

Samples Enriched with ¹³CO

[NBuⁿ₄] [PtCl₂(SnCl₃)(CO)], (I), containing ¹³Cenriched CO was generated *in situ* by stirring a CH₂Cl₂/CD₂Cl₂ solution of [NBuⁿ₄]₂ [Pt₂(μ -Cl)₂-Cl₂(SnCl₃)₂] [7] (147 mg, 0.1 mmol) under an atmosphere of ¹³CO (*ca.* 90% ¹³C) for *ca.* 15 min until the solution was yellow in colour. Following NMR measurements on (I), the solution was stirred over 1 equivalent of SnCl₂ for *ca.* 10 min to give [PtCl(SnCl₃)₂(¹³CO)]⁻, (II). This in turn was reacted with dihydrogen as described above to give (IV). A sample of $[Pt(SnCl_3)_4(^{13}CO)]^{2-}$, (III), was formed in situ using a procedure similar to that for the unenriched compound. Likewise, the reaction of PtCl₂ and SnCl₂/Cl⁻ was repeated with ¹³C to afford (VI).

Results and Discussion

Reactions in Dichloromethane

The reactions of $[PtCl_3(CO)]^-$ with tin(II) chloride in dichloromethane are described qualitatively by eqns. (1)–(3).

$$[PtCl_{3}(CO)]^{-} + SnCl_{2} \longrightarrow cis - [PtCl_{2}(SnCl_{3})(CO)]^{-}$$
I
(1)

$$(I) + SnCl_2 \longrightarrow trans - [PtCl(SnCl_3)_2(CO)]^-$$
(2)
II

$$II + 2SnCl_2 + Cl^- \longrightarrow [Pt(SnCl_3)_4(CO)]^{2-}$$
(3)
III

NMR parameters for (I), (II), and (III) are presented in Table I. The ¹⁹⁵Pt NMR spectrum of (I) shows a resonance at -4125 ppm flanked by two sets of satellites appropriate for coupling of ¹⁹⁵Pt to ¹¹⁹Sn (I = 1/2, 8.6% natural abundance) and ¹¹⁷Sn (I = 1/2, 7.6% natural abundance). The value of ${}^{1}J({}^{195}Pt, {}^{119}Sn)$ of 24817 Hz is consistent with the presence of a Pt-SnCl₃ bond [2]; moreover, measurement of the intensities of the tin satellites relative to the central resonance indicates that only one Sn atom is bound to platinum [8]. The ¹¹⁹Sn NMR spectrum shows the expected 1:4:1 pattern. Since the SnCl3⁻ ligand is thought to be a reasonable π -acceptor [9], we assign (I) as the cisisomer. NMR measurements on a sample of (I) containing 90% ^{13}C -enriched CO reveal a ^{13}C carbonyl resonance which shows both ^{195}Pt and $^{119}Sn/^{117}Sn$

TABLE I. NMR Parameters for the Monomeric Complexes a

111
170.0
-147
- 5681
1402
14658
198
5740

^aChemical shifts in ppm, coupling constants in Hz; at 243 K in CH_2Cl_2/CD_2Cl_2 unless otherwise stated. ^bAmbient temperature. ^cIn CH_2Cl_2/C_6D_6 .

Carbonyl Trichlorostannate Complexes of Platinum

Fig. 1. ¹¹⁹Sn NMR spectrum (243 K) of *trans*-[PtCl(SnCl₃)₂-(CO)]⁻, (II).

satellites. The magnitude of ${}^{2}J({}^{119}Sn, {}^{13}C)$ is in keeping with a *cis*-arrangement for CO and Sn*.

The ¹⁹⁵Pt NMR spectrum of (II) shows a resonance at --4449 ppm, which again has ¹¹⁹Sn and ¹¹⁷Sn satellites. The intensities of these satellites relative to the central signal are now in keeping with the coordination of two SnCl₃ ligands to platinum.

The ¹¹⁹Sn spectrum of (II) (see Fig. 1) shows a resonance at 17 ppm flanked by ¹⁹⁵Pt satellites at $\pm^{1}J(^{195}\text{Pt}, ^{119}\text{Sn})/2$. In addition, the spectrum also shows two weak satellites [separation $^{2}J(^{119}\text{Sn}, ^{117}\text{Sn})$] arising from the isotopomer [PtCl($^{119}\text{SnCl}_3$)-($^{117}\text{SnCl}_3$)(CO)]⁻. The centre of these lines does not correspond to $\nu(^{119}\text{Sn})$: instead, a small 'AB' distortion results because $^{2}J(^{119}\text{Sn}, ^{117}\text{Sn})$ is relatively large (46 118 Hz) compared to the $^{119}\text{Sn}/^{117}\text{Sn}$ chemical shift difference (*ca.* 4.12 MHz measured at 5.87 T). This large two-bond coupling is consistent with a *trans*-arrangement for the two Sn atoms [2].

We note that treatment of $[PtCl_3(CO)]^-$ with two equivalents of $SnCl_2$ in CH_2Cl_2 gives not only (II), but also small amounts of $[PtCl_2(SnCl_3)_2]^{2-}$ [10] and other non-carbonyl compounds. However, (II) is essentially the only species present when the reaction is carried out under an atmosphere of CO. Complexes (I) and (II) were isolated as their $[NBu^n_4]^+$ salts; their vibrational spectroscopic characteristics have been reported previously [11, 12].

When a CH_2Cl_2 solution of $[NBu^n_4][PtCl_3(CO)]$ is treated with four equivalents of $SnCl_2$ in the presence of chloride ion, a further complex is formed, which we assign as the five-coordinate compound $[Pt(SnCl_3)_4(CO)]^{2-}$ (III). However, we find that this is most conveniently prepared by the method shown in eqn. (4), and in this way we have isolated (III) as its $[PPh_4]^+$ salt.

Fig. 2. 119 Sn NMR spectrum (183 K) of [Pt(SnCl₃)₄- $(^{13}$ CO)]²⁻, (III).

$$[PtCl_4]^{2-} + 4SnCl_2 + CO \xrightarrow[1 h]{CH_2Cl_2} [Pt(SnCl_3)_4(CO)]^{2-}$$
III (4)

The ¹⁹⁵Pt NMR spectrum of (III) is similar in form to those observed for (I) or (II) except that the Sn satellites are more intense. The ¹¹⁹Sn spectrum comprises a resonance at -147 ppm flanked by ¹⁹⁵Pt and ¹¹⁷Sn satellites. The relative intensities of the tin satellites are in keeping with a formulation having 4 equivalent SnCl₃⁻ ligands. The presence of CO as the fifth ligand was confirmed by NMR measurements on a sample of (III), prepared as in eqn. (4), but using 90% ¹³C-enriched CO. At -90 °C the ¹¹⁹Sn NMR spectrum shows sharp signals, and each resonance (see Fig. 2) now exhibits a doublet splitting corresponding to ²J(¹¹⁹Sn, ¹³C).

There have been two earlier reports of Pt-Sn carbonyl complexes with very similar NMR parameters to those we observe for (III). The first [13], from this laboratory, proposed that the product of reaction of $[Pt(SnCl_3)_3(1,5-COD)]^-$ with CO was the dicarbonyl $[Pt(SnCl_3)_3(CO)_2]^-$; we now believe this to be the monocarbonyl (III). The second report [5a], by Clark and co-workers, concerns a complex they assigned as *trans*-[PrCl(SnCl_3)_2(CO)]^-; their NMR data closely resemble the parameters we give for (III), and not (II).

Complexes (II) and (III) show rather broad ¹¹⁹Sn resonances at ambient temperature, in keeping with intermolecular exchange of SnCl₃ as observed in other Pt–Sn complexes [14]. In addition, as we see broad ¹³C resonances for (II) and (III) at ambient temperature, intermolecular exchange of CO also seems likely. Indeed, solutions of (II) and (III) slowly lose CO upon standing. The NMR spectra of (III) show sharp signals from -30 to -90 °C and do not alter significantly within this range (*i.e.* the four SnCl₃ ligands remain equivalent), suggesting that the intramolecular exchange processes associated with five-coordinate complexes are still rapid (*cf.* the behaviour of [Pt(SnCl₃)₅]³⁻ [15].

^{*}The data base is insufficient to generalize; however, for the complexes (I)–(III), for which we have analyses and NMR data, a value of *ca*. 70 Hz seems reasonable for a ${}^{2}J({}^{119}\text{Sn}, {}^{13}\text{CO})$ *cis*-coupling.

Reaction of (II) with Dihydrogen

Our measurements show that treatment of a CH_2Cl_2 solution of (II) with dihydrogen leads to a mixture consisting mainly of the starting material and a new Pt–Sn compound (IV). Interestingly, this new species is not a hydride, since the only protons we observe belong to the solvent and the [NBuⁿ₄]⁺ cation. The ¹⁹⁵Pt and ¹¹⁹Sn NMR spectra of (IV) (recorded without proton decoupling*) show a central resonance flanked by rather complex sets of satellites. From an analysis of these NMR spectra, and those measured on a sample of (IV) containing ¹³C-enriched CO, we assign this complex as the anionic Pt(I) dimer, (IV).

$$\begin{bmatrix}
Cl_3Sn & SnCl_3 \\
& | & | \\
OC - Pt - Pt - CO \\
& | & | \\
Cl_3Sn & SnCl_3
\end{bmatrix}$$
IV

We base our conclusion on the following evidence: (i) The ¹¹⁹Sn spectrum shows two pairs of ¹⁹⁵Pt satellites of equal intensity, with separations of 21 874 and 135 Hz, which we attribute to ${}^{1}J({}^{195}\text{Pt},$ ¹¹⁹Sn) and ${}^{2}J({}^{195}\text{Pt}, {}^{119}\text{Sn})$ respectively. Corresponding ¹¹⁹Sn (and ¹¹⁷Sn) satellites are observed in the ¹⁹⁵Pt spectrum. This confirms the formulation of (IV) as a dimer.

(ii) Lines due to the isotopomer containing two ¹⁹⁵Pt nuclei and one ¹¹⁹Sn (or ¹¹⁷Sn) nucleus have been located in the ¹⁹⁵Pt spectrum. From these we measure a value of 1233 Hz for $J(^{195}Pt, ^{195}Pt)$, which is consistent with a one-bond interaction [17].

(iii) The ¹¹⁹Sn spectrum also shows two pairs of ¹¹⁷Sn satellites for ${}^{2}J({}^{119}Sn, {}^{117}Sn)$ and ${}^{3}J({}^{119}Sn, {}^{117}Sn)$, with separations of 31 015 and 630 Hz respectively. The larger coupling is only consistent with a *trans* Sn-Pt-Sn unit [2].

(iv) Analysis of the NMR spectra of a sample of (IV) containing ¹³C-enriched CO leads to values of ${}^{1}J({}^{195}Pt, {}^{13}C), {}^{2}J({}^{195}Pt, {}^{13}C)$ and ${}^{3}J({}^{13}C, {}^{13}C)$, in keeping with a) terminal CO ligands, and b) a *trans* OC-Pt-Pt-CO unit [18].

The NMR parameters for (IV), which are presented in Table II, have been used as input for simulations of its ¹³C, ¹¹⁹Sn and ¹⁹⁵Pt NMR spectra, and good fits between calculated and observed spectra were obtained in all cases.

When (II) is reacted with dihydrogen, a methoxide solution of neutral red becomes acidic after contact with the exit gases from the reaction. Assuming that the H⁺ arises from an unstable hydride, we propose that (IV) is produced by a route similar to that shown in eqns. (5), (6) and (7).

TABLE II. NMR Parameters for [Pt₂(SnCl₃)₄(CO)₂]^{2-- a}

δ(¹³ C) ^b	191.0	
$\delta(^{119}\text{Sn})$	14	
$\delta(^{195}Pt)$	-4471	
¹ <i>J</i> (¹⁹⁵ Pt, ¹¹⁹ Sn)	21874	
¹ <i>J</i> (¹⁹⁵ Pt, ¹⁹⁵ Pt)	1233	
$^{2}J(^{195}\text{Pt}, ^{119}\text{Sn})$	-135	
$^{2}J(^{119}\text{Sn}, ^{117}\text{Sn})$	31015	
$^{3}J(^{119}\text{Sn}, ^{117}\text{Sn})$	640	
¹ J(¹⁹⁵ Pt, ¹³ C) ^b	1503	
² J(¹⁹⁵ Pt, ¹³ C) ^b	39°	
${}^{2}J({}^{119}Sn, {}^{13}C)^{b}$	68 ^d	
${}^{3}J({}^{119}Sn, {}^{13}C)^{b}$	25 ^d	
${}^{3}J({}^{13}C, {}^{13}C)^{b}$	13	

^a-30 °C, CH₂Cl₂/C₆D₆. ^bAmbient temperature, CH₂Cl₂/ CD₂Cl₂. ^cSame sign as ¹J(¹⁹⁵Pt, ¹³C). ^dThe two couplings have opposite signs.

$$[PtCl(SnCl_3)_2(CO)]^- \xrightarrow{H_2} [PtClH_2(SnCl_3)_2(CO)]^-$$
II
(5)

$$[PtClH_{2}(SnCl_{3})_{2}(CO)]^{-} \xrightarrow{-HCl} [PtH(SnCl_{3})_{2}(CO)]^{-}$$
(6)

$$[PtH(SnCl_3)_2(CO)]^- + II \xrightarrow{-HCl} [Pt_2(SnCl_3)_4(CO)]^{2-}$$
$$IV \qquad (7)$$

if the H_2 activation is heterolytic^{*}. Alternatively, eqns. (5) and (6) may by combined.

$$[PtCl(SnCl_3)_2(CO)]^{-} \xrightarrow{-H_2} [PtH(SnCl_3)_2(CO)]^{-} + HCl$$
(8)

The formation of a Pt^{I} dimer from a Pt^{II} hydride complex (eqn. (9)) has previously been demonstrated [19]. Note that eqns. (7) and (9) are identical if Cl

$$[PtCl_2H(CO)]^- + [PtCl_3(CO)]^- \xrightarrow[+HCl]{-HCl} [Pt_2Cl_4(CO)_2]^{2-}$$

$$V \qquad (9)$$

replaces SnCl₃ in the former.

Finally, we note that when we treat a CH_2Cl_2 solution of (V) [20] with 4 equivalents of $SnCl_2$, complex (IV) is one of the major products. Reaction of (V) with just one equivalent of $SnCl_2$ affords an $SnCl_2$ bridged dimer [21].

Reactions in Acetone

When $[PtCl_3(CO)]^-$ is reacted in acetone with $SnCl_2$ instead of CH_2Cl_2 , the product, either (I), (II)

^{*}Hydride complexes give relatively large ${}^{1}J(Pt, H)$ and ${}^{2}J(Sn, H)$ coupling constants [16].

^{*}Suggested by a referee.

or (III), is a function of the ratio [Pt complex]/ $SnCl_2$]. Moreover, non-carbonyl anionic complexes such as cis- $[PtCl_2(SnCl_3)_2]^{2-}$ and $[Pt(SnCl_3)_5]^{3-}$ are also formed. If the reaction is carried out under an atmosphere of CO, we find a different chemistry prevails. Treatment of an acetone solution of [PtCl3-(CO)]⁻⁻⁻ with 2 to 3 equivalents of SnCl₂ under CO leads to the formation of (IV) and an additional. Pt-Sn complex (the latter species predominates for higher Sn:Pt ratios). This new complex, (VI), can also be prepared by reacting PtCl₂ with 2.5 equivalents of SnCl₂ in acetone in the presence of NEt₄Cl and carbon monoxide. We have isolated a sample of (VI) as a red crystalline solid; however, solution NMR measurements show it to contain ca. 15% (NEt₄)₃[Pt(SnCl₃)₅]. Unfortunately we have not been able to obtain a sample free from this impurity.

Physical measurements allow us to conclude:

(i) The structure contains a triangle of equivalent Pt atoms.

(ii) Each Pt carries a terminal CO ligand.

(iii) There are two types of SnCl_n ligand.

Point (i) is unequivocally shown by ¹⁹⁵Pt and ¹³C measurements on the ¹³CO-enriched complex (see Fig. 3). Moreover, the IR stretch at $\nu(CO) = 2055$ cm⁻¹ and the ¹J(¹⁹⁵Pt, ¹³C) value of 1750 Hz [22] support our assignment of terminal CO ligands.

Room temperature NMR measurements reveal (a) sharp ¹³CO signals, (b) a single sharp ¹⁹⁵Pt resonance with broad ^{117,119}Sn satellites and (c) a single broad ¹¹⁹Sn resonance, indicating exchange of tin ligands. At -50 °C, the ¹¹⁹Sn spectrum shows two SnCl_n types, $\delta = -24(A)$, -47(B), which appear* to be in the ratio 1:1. Lowering the temperature to -100 °C changes the relative signal intensities such that the ratio is now about 1(A):3(B).

The various ${}^{n}J({}^{195}\text{Pt}, {}^{119}\text{Sn})$ and ${}^{n}J({}^{119,117}\text{Sn})$ values (see Table III) suggest an unusual arrangement of the tin ligands based on the following:

(a) At -50 °C one type of ¹¹⁹SnCl₃, A, is associated with three Pt atoms (based on the 1:12:51:88: 51:12:1 pattern in the ¹¹⁹Sn spectrum) and couples to a second type A ¹¹⁷SnCl_n, ⁿJ = 26 173 Hz, in such a way as to suggest a *trans* orientation of these two tin ligands. The ¹J(¹⁹⁵Pt, ¹¹⁹Sn) value of 8806 Hz is modest.

(b) At -50 °C, type B tin resonance shows an unusually small $^{n}J(^{195}\text{Pt}, ^{119}\text{Sn})$ value, 813 Hz, suggestive of either a two- or three-bond Pt-Sn coupling constant or an average of one $^{1}J(^{195}\text{Pt}, ^{119}\text{Sn})$ with several other two- and/or three-bond coupling contants. The $^{2}J(^{119}\text{Sn}_{\text{B}}, ^{117}\text{Sn}_{\text{B}})$ value (2728 Hz) and the $^{2}J(^{119}\text{Sn}_{\text{A}}, ^{119}\text{Sn}_{\text{B}})$ are reasonable for a pseudo *cis*orientation of these two spins.

Fig. 3. Observed and simulated ¹³C NMR spectra (293 K) of $[Pt_3(SnCl_3)_4(^{13}CO)_3]^{2-}$, (V). (The weak resonances at the centre of the observed spectra are due to isotopomers containing one or more ¹²C ligands).

TABLE III. Selected NMR Parameters for $[Pt_3(CO)_3(Sn-Cl_x)_y]^{z^-}$, $(VI)^a$

Ambient temperatu	ire		
δ(¹³ C) δ(¹⁹⁵ Pt)	175.5 -4580	¹ J(¹⁹⁵ Pt, ¹³ C) ² J(¹⁹⁵ Pt, ¹³ C) ¹ J(¹⁹⁵ Pt, ¹⁹⁵ Pt)	1750 ^b 40 ^b 250
223 К			
$\delta(^{119}Sn_A)$	-24	$J(^{195}\text{Pt}, ^{119}\text{Sn}_{A})$	8806
$\delta(^{119}\mathrm{Sn}_{\mathbf{B}})$	47	$J(^{195}\text{Pt}, ^{119}\text{Sn}_{B})$	813
$J(^{119}\text{Sn}_{A}, ^{117}\text{Sn}_{A})$ $J(^{119}\text{Sn}_{B}, ^{117}\text{Sn}_{B})$	26173 2728	$J(^{119}{\rm Sn}_{\rm A}, ^{119}{\rm Sn}_{\rm B})$	806
173 K			
$\delta(^{119}\mathrm{Sn}_{A})$	-22	$J(^{195}\text{Pt}, ^{119}\text{Sn}_{A})$	8784
$\delta(^{119}\mathrm{Sn}_{\mathrm{B}})$	-41	$J(^{195}\text{Pt}, ^{119}\text{Sn}_{B})$	20603
		$J(^{119}\text{Sn}_{A}, ^{119}\text{Sn}_{B})$	775

^aIn $(CH_3)_2CO/(CD_3)_2CO$. ^bThese couplings have the same sign.

(c) At -100 °C, tin resonance B shows new broad ¹⁹⁵Pt satellites with ¹J(¹⁹⁵Pt, ¹¹⁹Sn) = 20603 Hz, suggestive of a terminal Pt--Sn bond.

At this point, a composition such as $[Pt_3(CO)_3-(SnCl_x)_y]^{z-}$ seems reasonable. X-ray fluorescence measurements on the impure solid suggest that we have four tin atoms per triangle of platinum atoms. Since our microanalytical data are ambiguous, we cannot be sure of the exact composition; however, all the available evidence suggests a composition of the form $[Pt_3(CO)_3(SnCl_x)_y]^{z-}$. We suggest that

^{*}We observe more than 30 signals in the spectrum of (VI) covering a range of *ca*. 35 KHz; thus an exact integral is difficult to obtain.

at -100 °C the spins for (VI) may be situated as shown. Platinum clusters containing bridging SnCl_x and terminal SnCl₃ ligands are known [23, 24] although there are no ¹¹⁹Sn or ¹⁹⁵Pt NMR data for these compounds.

We do not know the structure of (VI), but we feel that the ease with which both (IV) and (VI) are generated indicates that lower oxidation states and/or higher molecular weight complexes should be considered when discussing the catalytic mixture which stems from platinum salts, tin(II) chloride and CO.

Acknowledgements

I.R.H. thanks the Royal Society for a fellowship and we thank the Johnson Matthey Research Centre, U.K., for the loan of platinum salts.

References

- (a) G. Consiglio, P. Pino, L. I. Flowers and C. N. Pittman, JI., J. Chem. Soc., Chem. Commun., 612 (1980);
 (b) Y. Kawabata, T. Hayashi and I. Ogata, J. Chem. Soc., Chem. Commun., 462 (1979);
 (c) G. Consiglio and P. Pino, Helv. Chim. Acta, 59, 462 (1976);
 (d) I. Schwager and J. F. Knifton, J. Catal., 45, 256 (1976).
- 2 (a) A. Albinati, P. S. Pregosin and H. Rüegger, Angew. Chem., Int. Ed. Engl., 23, 78 (1984); (b) P. S. Pregosin and H. Rüegger, Inorg. Chim. Acta, 86, 55 (1984); (c) A. Albinati, R. Naegeli, K. H. A. Ostoja Starzewski, P. S. Pregosin and H. Rüegger, Inorg. Chim. Acta, 76, L231 (1983).

- 3 A. Albinati, P. S. Pregosin and H. Rücgger, *Inorg. Chem.*, 23, 3223 (1984).
- 4 G. K. Anderson, H. C. Clark and J. A. Davies, Organometallics, 1, 64 (1982).
- 5 (a) G. K. Anderson, H. C. Clark and J. A. Davies, *Inorg. Chem.*, 22, 427 (1983); (b) 22, 434 (1983); (c) G. K. Anderson, C. Billard, H. C. Clark, J. A. Davies and C. S. Wong, *Inorg. Chem.*, 22, 439 (1983).
- 6 J. Browning, P. S. Goggin, R. J. Goodfellow, M. G. Norton, A. J. M. Rattray, B. F. Taylor and J. Mink, J. Chem. Soc., Dalton Trans., 2061 (1977).
- 7 R. J. Goodfellow and I. R. Herbert, unpublished results.
- 8 R. W. Rudolph, R. C. Taylor and D. C. Young, in M. Tsutsui (ed.), 'Fundamental Research in Homogeneous Catalysis', Plenum, New York, 1979, p. 997.
- 9 H. C. Clark, C. Jablonski, J. Halpern, A. Mantovari and T. A. Weil, *Inorg. Chem.*, 13, 1543 (1974).
- 10 N. W. Alcock and J. H. Nelson, J. Chem. Soc., Dalton Trans., 2415 (1982).
- 11 J. V. Kingston and G. R. Scollary, J. Chem. Soc. A:, 3765 (1971).
- 12 C.-H. Cheng and R. Eisenberg, J. Am. Chem. Soc., 100, 5968 (1978).
- 13 M. Kretschmer, P. S. Pregosin and H. Rüegger, J. Organomet. Chem., 241, 87 (1983).
- 14 K. H. A. Ostoja Starzewski, P. S. Pregosin and H. Rüegger, *Helv. Chim. Acta*, 65, 785 (1982).
- 15 J. H. Nelson and N. W. Alcock, *Inorg. Chem.*, 21, 1196 (1982).
- 16 K. H. A. Ostoja Starzewski, H. Rüegger and P. S. Pregosin, *Inorg. Chim. Acta*, 36, L445 (1979).
- 17 N. M. Boag, J. Browning, C. Crocker, P. L. Goggin, R. J. Goodfellow, M. Murray and J. L. Spencer, *J. Chem. Res.*, (S)228, (M)2962, (1978).
- 18 I. R. Herbert, Ph.D. Thesis, University of Bristol, 1984.
- 19 P. L. Goggin and R. J. Goodfellow, J. Chem. Soc., Dalton Trans., 2355 (1973).
- 20 N. M. Boag, P. L. Goggin, R. J. Goodfellow and I. R. Herbert, J. Chem. Soc., Dalton Trans., 1101 (1983).
- 21 R. G. Goodfellow and I. R. Herbert, *Inorg. Chim. Acta*, 65, L161 (1982).
- 22 B. E. Mann and B. F. Taylor, '¹³C NMR Data for Organometallic Compounds', Academic Press, London, 1981, p. 181.
- 23 R. V. Lindsey, G. W. Parshall and V. G. Stalberg, *Inorg. Chem.*, 5, 109 (1966).
- 24 L. J. Guggenberger, J. Chem. Soc., Chem. Commun., 512 (1968).