Kinetics of the Oxidative Addition of Iodine to *β***-Diketonatobis-(triphenylphosphite)rhodium(I) Complexes**

G. J. VAN ZYL, G. J. LAMPRECHT and J. G. LEIPOLDT *Department of Chemistry, University of the Orange Free State, Bloemfontein, South Africa* (Received September 24, 1986)

Abstract

The oxidative addition reactions of a number of Rh(I) complexes of the type $[Rh(\beta\text{-diketone})(P-\beta\text{-diketone})$ $(OPh)₃$] with I₂ were studied in petroleum ether $(80-100 \degree C)$. The reactions proceed via two consecutive first-order reactions to give the final product $[Rh(\beta\text{-distance})(P(OPh)_3)_2(I)_2]$ with the iodide ligands in the axial positions. Various electronegative substituents of the β -diketone ligand have only a small influence on the reaction rates.

Introduction

The oxidative addition of the halogens to coordinatively unsaturated rhodium(I) complexes has received considerable attention in recent years. The majority of these studies dealt with the isolation and identification of these products $[1-6]$. A kinetic study by Kuwae et *al.* [7] dealt with the following oxidative addition reaction:

$$
[\text{Rh(EE)(L)2] + I2 \longrightarrow [\text{Rh(EE)(L)2(I)2]} (1)
$$

where $EE = dimethyldithiocarbanate (dtc)$ or acetylacetone (acac) and $L = 2,4,6$ -trimethylphenylisocyanide. The results indicate that the reaction proceeds via a charge transfer complex, [Rh(EE)- $(L)_2$ $\cdot I_2$, which is rearranged in two consecutive zero-order reactions, with respect to the I_2 concentration, to give the cis-diiodo and finally the *trans*diiodo complex. The structure of the final product was proposed on the basis of ¹H NMR and IR spectra, which indicate an octahedral geometry in which the EE-ligand and the two isocyanide ligands are in an equatorial plane and the two iodide ligands in the axial positions. The latter isomerization process was followed by a much slower reaction of *trans-* $[Rh(EE)(L)₂(I)₂]$ with the excess iodine to give $[Rh(EE)(L)₂(I₃)(I)].$

We have recently reported $[8-10]$ on the oxidative addition of iodomethane to [Rh(LL)(CO)- (PX_3)] complexes (LL = β -diketones or cupferron, $X = Ph$, p-PhCl or p-PhOMe) for which the results were strongly in favour of an ionic S_N ² two-step

0020-1693/87/\$3.50

mechanism. This paper reports the kinetic study of the oxidative addition of iodine to various $\lceil Rh(\beta - \epsilon) \rceil$ diketone) $(P(OPh)_{3})_{2}$ complexes in petroleum ether. The crystal structure determination [11] of the final reaction product, $[Rh(TFAA)(P(OPh)_{3})_{2}$ - $(I)_2$, confirmed the *trans* addition of the iodide ligands.

Experimental

The $[Rh(\beta\text{-diketone})(P(OPh)_3)_2]$ complexes $(\beta$ diketone = acetylacetone (acac), benzoylacetone (BA), dibenzoylmethane (DBM), trifluoroacetylacetone (TFAA), trifluorobenzoylacetone (TFBA) and hexafluoroacetylacetone (HFAA)) were synthesized by methods described previously [11, 121. Triple sublimed iodine was used throughout. Analytical grade petroleum ether $(80-100 \degree C)$ was used as solvent, except in the case of [Rh(HFAA)(P- $(OPh)₃$)₂] where CCl₄ was used as solvent due to the insolubility of the latter complex in petroleum ether. To, therefore, enable the comparison of the reaction rates of the different β -diketone complexes, the reaction rate of $[Rh(TFBA)(P(OPh))₃)₂$ was determined in both solvents.

The reaction rate constants were obtained by following the reactions at the given wavelengths (see Table II), using a Durrum, model D-110, stopped-flow spectrophotometer. An excess of iodine was used in order to achieve pseudo-first-order reaction conditions. The change in absorbance with time revealed that the overall reactions proceed via two consecutive reactions. The reaction rates of the two processes differ sufficiently to allow the graphical determination of the rate constants. Plots of $ln(A_t - A_{\infty})$ versus time for each process, were linear and the pseudo-first-order rate constants, k_{obs}^1 and k_{obs}^2 , are tabulated in Tables I and II.

The value of the equilibrium constant for reaction (2) was determined

$$
[Rh(TFAA)(P(OPh)3)2(I)2] + I2 \xleftarrow{K}
$$

$$
[Rh(TFAA)(P(OPh)3)2)(I3)(I)]
$$
 (2)

0 Elsevier Sequoia/Printed in Switzerland

TABLE I. Observed Rate Constants for the Two Consecutive Processes in the Reaction of $[Rh(TFAA)(P(OPh)₃)₂]$ (1.46) $\times 10^{-4}$ mol dm⁻³) with Excess I₂ at Various Temperatures $(\lambda_{exp} = 415$ nm)

Temperature $(^{\circ}C)$	$[I_2] \times 10^3$ $(mol dm^{-3})$	$k_{\text{obs}}^1 \times 10^{-1}$ (s^{-1})	$k_{\text{obs}}^2 \times 10^2$ (s^{-1})
17	4.97	2.10	4.05
	3.97	1.75	3.58
	2.98	1.69	3.52
	1.99	1.56	4.76
24.9	4.97	4.80	5.08
	3.97	4.74	6.27
	2.98	4.84	6.08
	1.99	3.91	5.75
30.5	4.97	5.82	9.75
	3.97	7.70	8.85
	2.98	7.03	8.78
	1.99	7.39	8.11

TABLE II. Average^a Observed Rate Constants for the Two Consecutive Processes in the Reaction of $\{Rh(\beta\text{-diketone})\}$ $(P(OPh)_{3})_{2}]$ with Excess I₂^b at 25.0 °C

β -diketone	λ_{exp}	$k_{\text{obs}}^{1}(s^{-1})$	$k_{\rm obs}^2$ (s ⁻¹ × 10 ³)
acac	415	31(8)	7.9(20)
BA	370	60(10)	9.7(10)
DBM	370	150(30)	14(2)
TFAA	415	46(4)	57(5)
TFBA	415	74(13)	60(2)
TFBA ^{c, d}	380	92(14)	
TFBA ^d	380	140(26)	40(7)
HFAA ^d	380	39(7)	4.4(10)

aMean value of 3 to 5 kinetic runs. **[I₂] were 10-60** fold excess with respect to the $[Rh(I)].$ $c[Rh(I)]$: [I₂] = $d_{\text{In }CCI_4}$ medium. $1:1.$

Fig. 1. Plot of A_{cor} (corrected absorbance) vs. [I₂] at 25 °C in CCl₄. $\lambda = 400$ nm, [Rh(III)] = 7.5 × 10⁻⁵ mol dm⁻³, $A_{\rm cor} = A - [I_2] \epsilon_{I_2}.$

spectrophotometrically on a Hitachi 150-20 spectrophotometer. The $[I_2]$ was varied from 5×10^{-4} to 1.5×10^{-2} mol dm⁻³. From the definition of K, the mass balance and Beer's Law, eqn. (3), can be derived

$$
4 = \frac{A_{\mathbf{r}} + A_{\mathbf{p}} K[\mathbf{I}]_2}{1 + K[\mathbf{I}]_2}
$$
 (3)

A is the absorbance at a given concentration of I_2 , $A_{\rm r}$ and $A_{\rm p}$ are the absorbances of the reactant and product, respectively. The results are represented in Fig. 1. The value of K was determined as $3.5(5)$ X 10^2 dm³ mol⁻¹ by fitting the absorbance versus $[I₂]$ data to eqn. (3) by using a non-linear leastsquares program [13]. The solid line in Fig. 1 is the computer fit of the data.

Results and Discussion

Immediately after mixing the Rh(I) and iodine solutions, an absorption maximum appeared at about 400 nm. The values of $k_{\rm obs}^1$ and $k_{\rm obs}^2$ were obtained by following the change in the absorbance of this absorption maximum. The decrease in the absorbance was very small (only about 0.03) and this may explain the relative large error in the values of $k_{\rm obs}^1$ and k_{obs}^2 .

The kinetic results (shown for the reaction of $[Rh(TFAA)(P(OPh)₃)₂]$ in Table I as an example) indicate that k_{obs}^1 and k_{obs}^2 are both essentially independent of the concentration of I_2 . The rate constants for all the complexes are summarized in Table II. The zero-order dependence of the reaction rate on the $[I_2]$ is also proved by the fact that the value of k_{obs}^1 for the reaction of [Rh(TFBA)(P- $(OPh)_3)_2$] under second-order and pseudo-first-order conditions (excess I_2) are approximately the same, see Table II.

A concerted three-centre cis-addition is a well known mechanism for the oxidative addition of homonuclear molecules like H_2 and I_2 to metal complexes [14, 15]. The crystal structure determination of the product of the reaction between [Rh(TFAA)- $(P(OPh)₃)₂$ and I₂, however, showed that the two iodide ligands are in the axial positions [11]. With this in mind, as well as the immediate appearance of an absorption maximum at about 400 nm, the observed two consecutive first-order reactions and the formation of the triiodide species, Scheme 1, is proposed.

The first step in the proposed mechanism, is the formation of the cis-diiodo complex via the charged transfer complex, A. According to this reaction scheme, k_{obs}^1 is given by

$$
k_{\text{obs}}^1 = \frac{k_1 K' \left[I_2 \right]}{1 + K' \left[I_2 \right]}
$$
 (4)

Scheme 1.

When $K'[I_2] \ge 1$, eqn. (4) simplifies to $k_{obs}^1 = k_1$. This is consistent with the kinetic results, since k_{obs}^1 is independent of the concentration of I_2 . Since the *cis-truns* isomerization proceeds intramolecularly, the scheme also predicts $k_{\text{obs}}^2 = k_2$; thus independent of the I_2 concentration in agreement with the kinetic results. The final equilibrium was too fast to observe kinetically.

The $k_{\rm obs}^2$ step is characterized by a decrease in $(A_0 - A_\infty)$ when the concentration of I_2 is decreased and is spectrophotometrically unobserved when the reaction is done under second-order conditions. The occurrence of the second step under such conditions is, however, confirmed by the fact that the *trans*-diiodo complex $([Rh(TFAA)(P(OPh)₃)₂(I)₂])$ was isolated from a reaction mixture in which [Rh- $(TFAA)(P(OPh₃)₂]$: I₂ = 1:1 [11]. A small difference in the absorbances of the cis- and trans-diiodo complex is probably the reason why the k_{obs}^2 step is spectrophotometrically undetectable at low $[I_2]$.

The determination of the stability constant of $[Rh(TFAA)(P(OPh)₃)(I₃)(I)]$, see Fig. 1, confirmed the formation of the triiodide species in a very fast (in contrast to a slow reaction proposed by Kuwae et al. [7]) reaction. The formation of the triiodide species (with a stability constant of about 350 dm^3 mol⁻¹ for the TFAA complex) explains why the k_2 step is observed only at a relative high $[I_2]$. In this regard the coordination of I_3 ⁻ to metal ions has been proposed in a number of cases [7, 16, 17].

It is well known that the rate of the oxidative addition of $CH₃I$ to metal complexes is influenced by electronic effects [8, 10, 18]. The reactivity of the complexes $[Rh(\beta\text{-diketone})(CO(PPh_3)]$ towards the oxidative addition of CH₃I increased for example 50 fold from β -diketone = hexafluoroacetylacetone to acetylacetone [8]. This order reveals the effect of electronegative substituents of the β -diketone (the electronegativity of CH_3 and CF_3 are 2.3 and 3.35 respectively [19]) on the nucleophilicity of these complexes and thus their reactivity towards oxidative addition reactions.

It is, however, apparent from the results in Table II that the substituents of the β -diketone have little effect on the rate of oxidative addition of iodine to these complexes. This may be explained by considering the proposed reaction scheme and the rate law, eqn. (4). The first rate determining step (k_1) is the rearrangement of the charge transfer complex and not only an oxidative addition reaction, while the second rate determining step $(k₂)$ is an isomerization reaction.

References

- 1 M. M. Singh and Y. S. Varsharskii, *Russ. J. Inorg. Chem., 14,1278 (1969).*
- **2** K. Goswani and M. M. Singh, *Indian J. Chem., 12, 858 (1974).*
- **3** L. Vallarino, *Chem. Abstr., 52,* 18065b (1957).
- **4** Y. S. Varsharskii, J. G. Cherkasova and N. A. Buzina, *Russ. J. Inorg.* Chem., 17, 1150 (1972).
- **5** F. Faraone, J. *Chem. Sot., Dalton Trans. 541 (1975).*
- **6** L. Vallarino, *Chem. Abstr.,* 180641(1957).
- **I** R. Kuwae, T. Tanaka and K. Kawakami, *Bull. Chem. Sot. Jpn., 52,437 (1979).*
- **8** *S. S.* Basson, J. G. Leipoldt and J. T. Nel, Inorg. *Chim. Acta, 84, 167 (1984).*
- **9** *S. S.* Basson, J. G. Leipoldt, A. Roodt, J. A. Venter and T. J. van der Walt, *Inorg. Chim. Acta*, 119, L9 (1986).
- **10** S. S. Basson. J. G. Leipoldt. A. Roodt and J. A. Venter. *Inorg. Chim. Acta, 119, 35 (1986).*
- **11** *G.* J. van Zyl, G. J. Lamprecht and J. G. Leipoldt, *Inorg. Chim. Acta, 122,75 (1986).*
- **12** A. M. Trzeciak and J. J. Ziblkowski, Znorg. *Chim. Acta, 64, L267 (1982).*
- **13** R. H. Moore, *Report LA 2367.* Los Alamos Scientific Laboratory: Los Alamos, N. Mex., March 1960 and addend, January 1963.
- **14** J. P. Collman and L. S. Hegedus, 'Principles and Applications of Organotransition Metal Chemistry', University Science Books, Mill Valley, Calif., 1980.
- **15** K. E. Purcell and J. C. Katz, 'Inorganic Chemistry', W. B. Saunders, Hong Kong, 1977.
- **16** K. D. Hodges and J. V. Rund, *Inorg. Chem., 14, 525 (1975).*
- **17** E. A. Pasek and D. K. Straub, *Inorg. Chim. Acta, 21. 23 (1977).*
- **18** A. J. Hart-Davies and W. A. G. Graham, *Inorg. Chem., 9, 2658 (1970).*
- **19** J. E. Huheey, 'Inorganic Chemistry Principles of Structure and Reactivity', Harper and Row, New York, 1978.