New Synthesis of Seven-coordinate Complexes of Molybdenum(II) and Tungsten(II) Containing Bidentate Phosphorus Ligands, $[MI_2(CO)_3{Ph_2P(CH_2)_nPPh_2}]$ (n = 1-6)

PAUL K. BAKER* and STUART G. FRASER

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL57 2UW, U.K. (Received November 10, 1986)

Abstract

A new high yielding synthesis of the seven-coordinate complexes $[MI_2(CO)_3\{Ph_2P(CH_2)_nPPh_2\}]$ (M = Mo and W; n = 1-6) is described. The procedure involves reacting the complexes $[MI_2(CO)_3(NCMe)_2]$ in CH₂Cl₂ with an equimolar amount of the bidentate phosphorus ligand. The low temperature $(-70 \,^{\circ}C) \,^{13}C$ NMR spectra of the complexes $[WI_2-(CO)_3\{Ph_2P(CH_2)_nPPh_2\}]$ (n = 3 and 5) indicates that the geometry is capped octahedral with a carbonyl ligand in the unique capping position.

Introduction

Although a wide variety of $[MX_2(CO)_3L_2]$ (M = Mo and W; X = Cl and Br; L = phosphines) complexes have been reported [1], far fewer diiodo compounds have been prepared, mainly due to the in synthesising $[M(\mu-I)I(CO)_{4}]_{2}$. difficulty [1] There is considerable interest in seven-coordinate complexes of molybdenum(II) and tungsten(II). For example, the compounds $[MX_2(CO)_3L_2]$ (M = Mo and W; X = Cl and Br; $L = PPh_3$ and $AsPh_3$) are catalysts in the ring-opening polymerisation of norbornene and norbornadiene [2, 3]. We wish to report a new high-yielding synthesis of the diiodide complexes $[MI_2(CO)_3[Ph_2P(CH_2)_nPPh_2]]$ (M = Mo and W; n = 1 - 6).

Experimental

 $[MI_2(CO)_3(NCMe)_2]$ were prepared according to literature methods [4] and $Ph_2P(CH_2)_nPPh_2$ (n = 1-6) were purchased from commercial sources. CH_2Cl_2 was dried and distilled before use.

¹H NMR spectra were recorded on a Jeol FX60 NMR spectrometer. Low temperature ¹³C NMR spectra were recorded on a Bruker WH-400 NMR spectrometer at the University of Warwick. Infrared

spectra were recorded on a Perkin-Elmer 197 infrared spectrophotometer. Elemental analyses for carbon, hydrogen and nitrogen were recorded on a Carlo Erba Elemental Analyser MOD 1106 (using helium carrier gas).

$MoI_{2}(CO)_{3}\{Ph_{2}P(CH_{2})_{4}PPh_{2}\}$ (7)

To $MoI_2(CO)_3(NCMe)_2$ (0.23 g, 0.446 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added Ph_2P - $(CH_2)_4PPh_2$ (0.19 g, 0.446 mmol), and the mixture was stirred for 5 min. After filtration, removal of the solvent *in vacuo* gave brown crystals of $[MoI_2(CO)_3[Ph_2P(CH_2)_4PPh_2]]$ (yield = 0.29 g, 65%), which were recrystallised from CH_2Cl_2 .

$WI_2(CO)_3\{Ph_2P(CH_2)_4PPh_2\}(8)$

To $WI_2(CO)_3(NCMe)_2$ (0.25 g, 0.414 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added Ph_2P (CH_2)₄PPh₂ (0.177 g, 0.415 mmol), and the mixture was stirred for 8 min. After filtration, removal of the solvent *in vacuo* gave green crystals of [WI₂-(CO)₃{Ph₂P(CH₂)₄PPh₂}] (yield = 0.25 g, 64%), which were recrystallised from CH₂Cl₂.

In similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with $Ph_2P(CH_2)_nPPh_2$ (n = 1, 2, 3, 5 and 6) afforded the complexes $[MI_2(CO)_3[Ph_2P(CH_2)_nPPh_2]]$.

Results and Discussion

The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo and W) react in CH₂Cl₂ with Ph₂P(CH₂)_nPPh₂ (n = 1-6) to afford high yields of the new seven-coordinate complexes $[MI_2(CO)_3\{Ph_2P(CH_2)_nPPh_2\}]$ (n = 3, 4, 5 and 6) and the previously reported [1, 5, 6] compounds $[MI_2(CO)_3\{Ph_2P(CH_2)_nPPh_2\}]$ (n = 1 and 2) via displacement of two acetonitrile ligands. The complexes have been fully characterised by elemental analyses (C, H, and N) (Table I), infrared and ¹H NMR spectroscopy (Table II). The complex $[WI_2(CO)_3\{Ph_2P(CH_2)_6PPh_2\}]$ was confirmed as a CH₂Cl₂ solvate from repeated elemental analyses

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Complex	Colour	Yield (%)	Analysis (%) ^a	
			С	Н
1 $[MoI_2(CO)_3[Ph_2P(CH_2)PPh_2]]$	brown	77	40.6(41.1)	2.6(2.7)
2 $[WI_2(CO)_3[Ph_2P(CH_2)PPh_2]]$	orange	62	37.5(37.1)	2.6(2.5)
3 $[MoI_2(CO)_3[Ph_2P(CH_2)_2PPh_2]]$	brown	80	41.9(41.9)	3.2(2.9)
4 $[WI_2(CO)_3[Ph_2P(CH_2)_2PPh_2]]$	green	68	37.7(37.9)	2.9(2.6)
5 $[MoI_2(CO)_3[Ph_2P(CH_2)_3PPh_2]]$	yellow	78	41.9(42.6)	3.2(3.1)
6 $[WI_2(CO)_3[Ph_2P(CH_2)_3PPh_2]]$	yellow	66	38.7(38.6)	2.8(2.8)
7 $[MoI_2(CO)_3[Ph_2P(CH_2)_4PPh_2]]$	brown	76	43.1(43.3)	3.6(3.3)
8 $[WI_2(CO)_3[Ph_2P(CH_2)_4PPh_2]]$	green	64	39.0(39.3)	3.1(3.0)
9 $[MoI_2(CO)_3[Ph_2P(CH_2)_5PPh_2]]$	brown	82	43.9(44.0)	3.6(3.5)
$I0 [WI_2(CO)_3[Ph_2P(CH_2)_5PPh_2]]$	green	70	39.9(40.0)	3.3(3.1)
11 $[MoI_2(CO)_3[Ph_2 P(CH_2)_6 PPh_2]]$	green	75	45.4(44.6)	3.9(3.6)
12 $[WI_2(CO)_3[Ph_2P(CH_2)_6PPh_2]] \cdot CH_2Cl_2$	yellow	66	38.7(38.5)	3.2(3.2)

TABLE I. Physical and Analytical Data for the Complexes $[MI_2(CO)_3[Ph_2P(CH_2)_nPPh_2]]$

^aCalculated values in parenthesis.

TABLE II. Infrared ^a and ¹ H NMI	^D Data for the Complexes [$MI_2(CO)_3$	$\{Ph_2P(CH_2)_nPPh_2\}$
--	---------------------------------------	--------------	--------------------------

Complex	$\nu(CO) (cm^{-1})$	8	¹ H NMR Data (δ)
1	2035(m), 1967(s), 1915(m)		7.26 (m,20H,Ph), 1.63 (s,2H,PCH ₂)
2	2035(m), 1940(s), 1920(m)		7.45 (m,20H,Ph) 2.72 (brs,2H, PCH ₂)
3 4	2035(m), 1966(s), 1915(s) 2015(s), 1934(s), 1900(s)		7.48 (m,20H,Ph) 2.85 ($d_{J}^{31}P^{-1}H = 16.1$ Hz, 4H, PCH ₂) 7.45 (m,20H,Ph), 2.83 ($d_{J}^{31}P^{-1}H = 16.4$ Hz, 4H, PCH ₂)
5	2035(s), 1960(s), 1919(s)		7.42 (m,20H,Ph), 3.33 (m,4H,PCH ₂) 1.96 (brs,2H,P-CH ₂ CH ₂)
6	2010(s), 1940(s), 1904(s)		7.26 (m,20H,Ph), 3.32 (m,2H,PCH ₂), 2.78 (m,2H,PCH ₂), 2.17 (s,2H,PCH ₂ CH ₂)
7	2020(s), 1950(s), 1912(s)		7.43 (m,20H,Ph), 3.11 (m,4H,PCH ₂), 2.0 (m,4H,PCH ₂ CH ₂)
8	2010(s), 1937(s), 1902(s)		7.41 (m,20H,Ph), 3.13 (m,4H,PCH ₂), 1.99 (m,4H,PCH ₂ CH ₂)
9	2025(s), 1958(s), 1920(s)		7.49 (m,20H,Ph), 2.07 (m,4H,PCH ₂), 1.58 (m,4H,PCH ₂ CH ₂), 1.25 (s,2H,PCH ₂ CH ₂ CH ₂)
10	2025(s), 1946(s), 1910(s)		7.41 (m,20H,Ph), 3.13 (m,4H,PCH ₂), 2.18 (m,4H,PCH ₂ CH ₂), 1.25 (brs,2H,PCH ₂ CH ₂ CH ₂ CH ₂)
11	2020(s), 1955(s), 1916(s)		7.41 (m,20H,Ph), 3.07 (m,4H,PCH ₂), 1.58 (brs,4H,PCH ₂ <i>CH</i> ₂), 1.14 (brs,4H,PCH ₂ CH ₂ CH ₂)
12	2015(s), 1935(s), 1904(s)		7.42 (m,20H,Ph), 5.30 (s,2H,CH ₂ Cl ₂), 3.12 (brs,4H,PCH ₂), 2.59 (m,4H,PCH ₂ CH ₂), 1.25 (m,4H,PCH ₂ CH ₂ CH ₂)

^aSpectra recorded in CHCl₃; m, medium; s, strong. ^bSpectra recorded in CDCl₃ (+25 °C) and referenced to Me₄Si.

and ¹H NMR spectroscopy. The complexes are all moderately air-stable in the solid state and can be stored under nitrogen for several days. The compounds are soluble in polar solvents such as CHCl₃ and CH₂Cl₂ but are only slightly soluble in hexane and diethylether. Although the complexes $[MX_2(CO)_3{Ph_2P(CH_2)_nPPh_2}]$ (M = Mo and W; X = Cl; Br and I; n = 1 and 2) have been made by the two routes shown in Scheme 1 [1, 5, 6], the yields obtained based on these methods for the diiodide compounds are relatively low. Whereas the complexes $[MI_2(CO)_3(NCMe)_2]$ are prepared in quantitative yield by the reaction sequence shown in Scheme 2 [4].

(a)
$$[M(CO)_6] \xrightarrow{L-L} [M(CO)_4(L-L)] \xrightarrow{X_2} [MX_2(CO)_3(L-L)]$$

M = Mo and W; X = Br and I; $L-L = PPh_2P(CH_2)_nPPh_2$ (n = 1 and 2)

(b)
$$[M(CO)_6] \xrightarrow{X_2} [M(\mu - X)X(CO)_4]_2 \xrightarrow{L-L} [MX_2(CO)_3(L-L)]$$

M = Mo and W; X = Cl, Br and I; L-L = $Ph_2P(CH_2)_nPPh_2$ (n = 1 and 2)

Scheme 1.

$$[M(CO)_6] \xrightarrow{NCMe} [M(CO)_3(NCMe)_3] \xrightarrow{I_2} [MI_2(CO)_3(NCMe)_2]$$

Scheme 2.

The geometry of the complexes $[MI_2(CO)_3 \{Ph_2P(CH_2)_nPPh_2\}$ is likely to be capped octahedral in view of the previously reported X-ray crystal structures of seven-coordinate complexes, all having capped octahedral geometry. The infrared spectral properties of the $[MI_2(CO)_3]{Ph_2P(CH_2)_n}$ PPh_2 complexes are similar to analogous compounds which have been shown to have capped octahedral geometry [7-21]. The geometry of the seven-coordinate complexes containing bidentate ligands $[MoBr_2(CO)_3{Ph_2P(CH_2)_2PPh_2}]$ [17], $[WI_2 (CO)_{3}[Me_{2}P(CH_{2})_{2}PMe_{2}]$ [18], $[WI_{2}(CO)_{3}[Me_{2} AsC(CF_3):C(CF_3)AsMe_2$ [19], [MoI₂(CO)₃{rac-o- $C_{6}H_{4}(AsMePh)_{2}$ [20], [MoI₂(CO)₃{meso-o-C₆H₄- $(AsMePh)_2$ [20] and $[WI_2(CO)_3 \{Ph_2As(CH_2)As Ph_2$ [21] which have been determined by X-ray crystallography are all capped octahedral and have a carbonyl ligand in the unique capping position. Colton and Kevecordes [22] have recently shown how low temperature ¹³C NMR spectroscopy can be used to indicate if there is a carbonyl ligand in the capping position of a capped octahedral structure. The low temperature ¹³C NMR spectra of the [MI₂- $(CO)_{3}[Ph_{2}P(CH_{2})_{n}PPh_{2}]$ complexes were difficult to obtain due to the low solubility of these complexes at -70 °C, however, the low temperature $(-70 \degree C)$ ¹³C NMR spectra of $[WI_2(CO)_3 \{Ph_2P_ (CH_2)_n PPh_2$] for n = 3 showed two carbonyl resonances at δ (CD₂Cl₂) = 232.9 and 216.5 ppm and for n = 5 showed two carbonyl resonances at δ (CD₂Cl₂) = 232.4 and 212.9 ppm and it is likely that the low field resonances at 232.9 and 232.4 are due to a carbonyl ligand in the unique capping position of the capped octahedral structure.

We are currently investigating the catalytic activity of these $[MI_2(CO)_3\{Ph_2P(CH_2)_nPPh_2\}]$ complexes since the seven-coordinate compounds $[MX_2$ -

 $(CO)_{3}L_{2}$] (M = Mo and W; X = Cl and Br; L = PPh₃ and AsPh₃) have recently been discovered to be catalysts in the ring-opening polymersiation of norbornene and norbornadiene [2, 3].

Acknowledgements

We wish to thank Dr. O. W. Howarth for measuring low temperature $(-70 \,^{\circ}\text{C})^{13}\text{C}$ NMR spectra of the complexes $[WI_2(CO)_3\{Ph_2P(CH_2)_nPPh_2\}]$ (n = 3 and 5) at the University of Warwick and we thank the SERC for support.

References

- 1 R. Colton, Coord. Chem. Rev., 6, 269 (1971), and refs. therein.
- 2 L. Bencze and A. Kraut-Vass, J. Mol. Catal., 28, 369 (1985).
- 3 L. Bencze, A. Kraut-Vass and L. Prókai, J. Chem. Soc., Chem. Commun., 911 (1985).
- 4 P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., 309, 319 (1986).
- 5 J. Lewis and R. Whyman, J. Chem. Soc., 5486 (1965).
 6 M. W. Anker, R. Colton, C. J. Rix and I. B. Tomkins, Aust. J. Chem., 22, 1341 (1969).
- 7 A. Mawby and G. E. Pringle, J. Inorg. Nucl. Chem., 34, 517 (1972).
- 8 M. G. B. Drew, A. W. Johans and A. P. Wolters, J. Chem. Soc., Chem. Commun., 819 (1971).
- 9 M. G. B. Drew, J. Chem. Soc., Dalton Trans., 626 (1972).
- 10 M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1984 (1975).
- 11 G. Schmid, R. Boese and E. Welz, Chem. Ber., 108, 260 (1975).
- 12 R. Boese and U. Müller, Acta Crystallogr., Sect. B, 32, 582 (1976).
- 13 M. G. B. Drew and J. D. Wilkins, J. Chem. Soc., Dalton Trans., 557 (1977).
- 14 M. G. B. Drew, A. P. Wolters and I. B. Tomkins, J. Chem. Soc., Dalton Trans., 974 (1977).
- 15 M. G. B. Drew and J. D. Wilkins, J. Chem. Soc., Dalton Trans., 194 (1977).
- 16 M. G. B. Drew and A. P. Wolters, J. Chem. Soc., Chem. Commun., 457 (1972).
- 17 M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1329 (1972).
- 18 M. G. B. Drew and C. J. Rix, J. Organomet. Chem., 102, 467 (1975).
- 19 A. Mercer and J. Trotter, Can. J. Chem., 52, 3331 (1974).
- 20 J. C. Dewan, K. Henrick, D. L. Kepert, K. R. Trigwell, A. H. White and S. B. Wild, J. Chem. Soc., Dalton Trans., 546 (1975).
- 21 M. G. B. Drew and A. P. Wolters, Acta Crystallogr., Sect. B, 33, 205 (1977).
- 22 R. Colton and J. Kevecordes, Aust. J. Chem., 35, 895 (1982).