

tetraamminechromium(II1) series Chromium, ammonia and cyanide were determined

Pie&o Riccieri and **Edoardo Zinato***

Dipartimento di Chimica, Vniversitd di Pencgia, 06100 Perugia (Italy)

frans-Diacidotetraammine complexes have played an important role in kinetic [l, 21 and photochemical [3, 4] studies of chromium(III). Two ways of access to the trans- $Cr(NH_3)_4XY^+$ family have been so far described in the literature: either ammonation of trans-Cr(py)₄ F_2 ⁺ to trans-Cr(NH₃)₄ F_2 ⁺ [5], or acid cleavage of the binuclear chloro-erythro complex to yield trans-Cr(NH₃)₄(H₂O)Cl²⁺ [6, 7]. The general stereoretentivity of chromium(II1) substitution in aqueous media [S] then allows coordination of a variety of *trans* X and/or Y ligands. Both methods, however, involve several laborious steps, some of which are under drastic conditions.

We report here a new, short route to this class of compounds, devised in the course of our investigations of chromium(II1) cyano-ammine species [9-121. Its key feature is the straightforward obtainment of trans-Cr(NH₃)₄(CN)₂⁺ in fairly good yield, starting from readily available materials. This affords an example of synthetic application of the trans effect in octahedral complexes.

Experimental

Reagents and techniques

Dimethyl sulfoxide (Me₂SO) was dried with 4 \AA molecular sieves. $[Cr(NH₃)₅(Me₂SO)](ClO₄)₃$ was obtained by heating $[Cr(NH₃)₅(H₂O)](ClO₄)₃ [13]$ in Me₂SO, as already described [9]. An improved procedure to precipitate the product without using (expensive) LiClO₄ in methanol, was $1.5:1$ dilution with water of the cooled reaction mixture, followed by

addition of an equal volume of either aqueous 10 M NaClO₄ or 70% HClO₄. The yield of crude product was c. 95%.

Caution. The above mixture must be diluted with **FREINER WATER WATER WATER WATER WATER STATES WATER WATER**

explosion. In addition, although no nuisance was experienced in this preparation, perchlorate salts of complexes with organic groups should be regarded Novel synthesis of trans- $Cr(NH_3)_4(CN)_2$ ⁺: as potentially explosive, specially when ether-damp. TOVER SYMPOSIS OF HUISPER (CIVIT₃)4(CIV)₂ Working with cyanide requires an efficiently venti-
a facile entry to the *trans*lated hood.

> by reported methods [10]. Absorption spectra were recorded by a Cary 17 spectrophotometer. Emission spectra were measured by a Perkin-Elmer 650-10s spectrofluorometer.

(Received September *4, 1990) trans-Dicyanotetraamminechromium(III) perchlorate*

Due to the photosensitivity of chromium(III), all operations were performed in dim light. A 5.0-g portion of NaCN (c. 100 mmol) was dissolved on heating in 75 ml of Me₂SO in a stoppered flask. Following addition of 5.0 g of $[Cr(NH_3)_5$ - $(Me₂SO)(ClO₄)$, (c. 10 mmol), the mixture was heated at 60 "C for 60 min with stirring. The color turned from purple to orange and some yellow solid, consisting of $[Cr(NH₃)₅(CN)](CN)₂$, separated. A 100-ml volume of 3 M LiClO₄ in MeOH was then added and the suspension was kept at 60 "C for 12-15 h under magnetic stirring and maintaining the flask closed. A lemon-yellow powdery salt progressively accumulated. After cooling this was removed by centrifugation, washed with ethanol, then with ether, and vacuum-dried over P_2O_5 . The yields ranged between 1.0 and 1.3 g, or 40-50%. The crude product was recrystallized by dissolution of 1.0 g in 150 ml of water at 40 "C, filtration, and slow addition of 60 ml of aqueous 10 M NaClO₄ to the stirred, cool solution. After ice-cooling for 2-3 h, the crystalline trans- $[Cr(NH₃)₄(CN)₂]ClO₄$ was collected by filtration and washed and dried as above. Recovery was c. 90%. The maxima of the ligand-field (LF) absorption spectrum in aqueous solution occur at 440 (ϵ 42.6) and 344 (ϵ 41.5) nm, as those reported previously [lOI.

Aquation products

trans- $[Cr(NH₃)₄(H₂O)(CN)]Cl₂$ was prepared by stirring a suspension of 1.0 g of *trans-* $[Cr(NH₃)₄(CN)₂]ClO₄$ (3.7 mmol) in 38 ml of 0.10 M HCl for 30 min at 25 "C. Dissolution proceeded with CN^- aquation and involved acid consumption. The amount of HCl was such that the pH of the final, orange solution was 2.5-3.0. Dropwise addition of 10 ml of aqueous 16 M LiCl precipitated the

^{*}Author to whom correspondence should be addressed.

product. After ice-cooling for 2-3 h, the yellow-orange crystals were filtered off, washed with ethanol, then with ether, and vacuum-dried over P_2O_5 . A typical yield was 0.8 g or 90%. Anal. Calc. for $[Cr(NH₃)₄(H₂O)(CN)]Cl₂: Cr, 22.12; NH₃, 28.98;$ CN, 11.07. Found: Cr, 21.8; NH₃, 28.7; CN, 10.9%. The LF maxima in aqueous 10^{-3} M HClO₄ are at 468 (ϵ 48) and 354 (ϵ 32) nm and match those given earlier for the trans-cyanoaquo ion isolated in solution $[10]$.

 $trans\text{-}[Cr(NH₃)₄(H₂O)(CN)](ClO₄)$, was obtained by slowly adding 25 ml of 3 M LiClO₄ in MeOH to a filtered, stirred solution of 1.0 g of the chloride salt in c . 20 ml of water at pH 3.5 (HClO₄). Icecooling for 2-3 h completed precipitation. The perchlorate salt was recovered by filtration, washed with ice-cold ethanol (in which it is slightly soluble) and ether, and air-dried. This was recrystallized from water at pH 3.5 by addition of 10 M NaClO₄ and washed and dried as above. The yield of pure product was 1.0 g or 67%. *Anal*. Calc. for $[Cr(NH₃)₄$ - $(H₂O)(CN)[(ClO₄)₂: Cr, 14.32; NH₃, 18.76; CN, 7.17.$ Found: Cr, 14.1; NH₃, 18.6, CN, 7.0%. The LF spectrum is identical with that of the chloride salt.

trans-[Cr(NH₃)₄(H₂O)₂](ClO₄)₃ was prepared by stirring a suspension of 1.0 g of *trans-* $[Cr(NH₃)₄(CN)₂]ClO₄$ (3.7 mmol) into 20 ml of 1.5 M HCl for 60 min at 40 "C. Treatment of the cooled solution with an equal volume of 70% HClO₄ and ice-cooling for 2-3 h precipitated a pinkish salt, which was collected, washed with ethanol and ether, and vacuum-dried. Yield: 1.4 g or 85%. The LF spectrum shows one shoulder at 520 nm (ϵ 17) and two maxima at 475 (ϵ 20) and 368 (ϵ 29) nm, in agreement with literature data [7].

Results and discussion

The present synthesis of trans-Cr(NH₃)₄(CN)₂⁺ is much simpler and more efficient than the one we reported earlier [10], whereby conversion of the initial chromium(II1) salt to the final product required at least 7 preparative stages. In essence, this procedure enables a 'one-pot' passage under mild conditions from the easily obtainable pentaammines to the less accessible trans-tetraammines of chromium(III).

The preliminary process is smooth anation of $Cr(NH₃)₅(Me₂SO)³⁺$ by CN^- (eqn. (1)). As already pointed out $[9, 10]$, the ligand to be replaced must

$$
Cr(NH3)5(Me2SO)3+ + CN- Me2SO
$$

$$
Cr(NH3)5(CN)2+ + Me2SO
$$
 (1)

not be H_2O , since coordinated water is readily deprotonated by the basic cyanide ion even in nonaqueous media. The Cr-0 bond would thus be strengthened, and decomposition of the unstable hydroxo complex would successfully compete with anation. In addition, the dipolar aprotic solvent excludes CN⁻ hydrolysis and enhances ion association [14], hence, anation. If needed, the $Cr(NH₃)₅(CN)²⁺$ intermediate may be isolated at this point in high yield [9].

The subsequent phase (eqn. (2)) takes advantage of two factors: (i) the trans directing power of $Cr(NH₃)₅(CN)²⁺ + CN⁻$ MeOH

$$
trans-Cr(NH3)4(CN)2+ + NH3 (2)
$$

CN⁻ and (ii) the insolubility of *trans-* $Cr(NH₃)₄(CN)₂⁺$ in methanol, which prevents further reactions. The Cr-NH₃ bonds of acidoammine complexes in general, and those of $Cr(NH₃)₅X²⁺$ ions in particular, are known to be very stable and to persist throughout the substitution reactions of the acido groups [l, 21: ammonia displacement of the pentaammine with $X = CN^-$ may be thus regarded as an exception. Once the first cyanide has entered the coordination sphere, the *trans* NH₃ ligand is selectively substituted by another CN^- . The atypical behavior was not quite unexpected, however, in the light of our kinetic results with *trans-* $Cr(NH₃)₄(CN)X²⁺$ -type complexes [11, 12] quantifying *trans* effects in chromium(III) and supplementing literature data for octahedral cobalt(II1) systems [15]. It may be also noted that, unlike the earlier reported interaction of tetraammine species with CN^- in Me₂SO solution resulting in mixtures of the two dicyano isomers [10], the heterogeneous process in methanol appears to be stereospecific, at least on a preparative scale.

Attempts to obtain $Cr(NH₃)₄(CN)₂⁺$ species from $[Cr(NH₃)₅(CN)](CN)₂$ at high temperature by analogy with the solid-state, inner-outer sphere exchange of other acidopentaammines [l], were unsuccessful.

Authentication of the trans-dicyano complex was by means of its UV-Vis absorption features, as well as by its emission in room-temperature solution, centered at 698 nm [10]. The isomeric purity was confirmed by the spectrum of the final aquation product, trans- $Cr(NH_3)_4(H_2O)_2^{3+}$, markedly different from that of the cis form $[7]$.

trans-Cr(NH₃)₄(CN)₂⁺ has been demonstrated to undergo acid-catalyzed stepwise aquation of the $CN^$ groups with complete retention of configuration [lo], as is generally true for aqueous chromium(II1) systems [8]. Since the rates for the first and the second solvation stage differ by two orders of magnitude [11], both trans- $Cr(NH_3)_4(H_2O)(CN)^{2+}$ and trans-

 $Cr(NH_3)_4(H_2O)_2^{3+}$ can be obtained separately in good amounts under the appropriate acidity, and precipitated.

The perchlorate salt of the diaquo ion represents a convenient parent compound for various transtetraammines of chromium(II1).

The monoaquo species, trans- $[Cr(NH₃)₄(H₂O)$ - $(CN)[ClO₄)₂$, reacts efficiently in methanol suspension with good nucleophiles, as thiocyanate and fluoride, forming trans-Cr(NH₃)₄(NCS)(CN)⁺ and *trans*-Cr(NH₃)₄(CN)F⁺, as described elsewhere [16]. The latter exhibit uncommon ground-state [12] and excited-state [16] behaviors, related to the considerable difference in the electronic and bonding properties of the two axial ligands. Obtainment of these complexes is again facilitated by the *trans* labilizing ability of cyanide.

Acknowledgement

This work was supported by the Ministero della Pubblica Istruzione of Italy.

References

- 1 C. S. Gamer and D. A. House, *Tmnsition Met. Chem., 6 (1970) 59.*
- 2 J. O. Edwards, F. Monacelli and G. Ortaggi, *Inorg. Chim. Acta, 11 (1974) 47.*
- **3** E. Zinato, in A. W. Adamson and P. D. Fleischauer (eds.), *Concepts of Inorganic Photochemistry,* Wiley, New York, 1975, Ch. 4, p. 143.
- 4 A. D. Kirk, *Coord. Chem. Rev.*, 39 (1981) 225.
- 5 **J.** Glerup and C. E. Schäffer, *J. Chem. Soc., Chem. Commun., (1968) 38; Znorg. Chem., 15* (1976) 1408.
- **6** D. W. Hoppenjans, J. B. Hunt and M. J. DeChant, J. Chem. Soc., Chem. Commun., (1968) 510.
- **7** D. W. Hoppenjans and J. B. Hunt, Znorg. *Chem., 8 (1969) 505.*
- **8** R. D. Archer, *Coord. Chem. Rev., 4 (1969) 243.*
- **9** P. Riccieri and E. Zinato, Znorg. *Chem., 19 (1980) 853.*
- **10** P. Riccieri and E. Zinato, Znorg. *Chem., 20* (1981) 3722.
- 11 P. Riccieri and E. Zinato, *Inorg. Chem., 24* (1985) 441.
- **12** P. Riccieri and E. Zinato, to be published.
- **13** M. Mori, *Znorg Synth., 5 (1957) 132.*
- **14** D. A. Palmer and D. W. Watts, Znorg. *Chem., 10 (1971) 281.*
- 15 J. M. Pratt and R. G. Thorp, *Adv. Inorg. Chem. Radiochem., I2 (1969) 375.*
- 16 P. Riccieri, E. Zinato and A. Damiani, *Inorg. Chem.*, *26* (1987) *2667.*