# The Preparation and Structure of Tris[bis(pyrazolyl)borate]indium(III)

BRIAN K. NICHOLSON, RALPH A. THOMSON and FRAZER D. WATTS School of Science, University of Waikato, Hamilton, New Zealand (Received December 1, 1987)

#### Abstract

The compound  $\ln[(pz)_2BH_2]_3$  (pz = 1-pyrazolyl,  $C_3H_3N_2^-$ ) was prepared from  $\ln(NO_3)_3$  and  $K[(pz)_2-BH_2]$  in water, and characterised by spectroscopic and X-ray methods. Crystals are orthorhombic,  $Pna2_1$ , a = 20.279(4), b = 8.884(2), c = 13.411(2) Å; R = 0.0285. Individual molecules contain a near-regular six-coordinate indium atom with In-N (av.) 2.241(5) Å. The pyrazolyl borate ligands are puckered, with dihedral angles between the two rings of each ligand in the range  $133-144^\circ$ .

#### Introduction

Neutral tris-chelate  $\beta$ -ketoenolate complexes of metal ions, such as M(acac)<sub>3</sub>, have been extensively studied for many years since they are usually stable, easily-prepared materials with interesting properties. It is therefore surprising that related neutral complexes containing the Trofimenko ligand [(pz)<sub>2</sub>-BH<sub>2</sub>]<sup>-</sup> (1) are essentially unknown, since acac<sup>-</sup> and



1 are formally analogous in that they are both uninegative bidentate ligands which give six-membered chelate rings [1]. The major difference between them is that unlike the planar acac<sup>-</sup> the ligand 1 is usually puckered to provide a suitable 'bite' while maintaining tetrahedral angles at the boron atom. This makes 1 a bulkier ligand than acac<sup>-</sup> and so leads to more crowded coordination spheres. As a consequence most of the transition element complexes incorporating ligand 1 are four-coordinate square-planar or tetrahedral M(II) species [1, 2]. However the synthesis of some anionic, tris-chelate complexes [M-{( $(pz)_2BH_2$ }]<sup>-</sup> has been reported [3], and an exam-

0020-1693/88/\$3.50

ple with M = V structurally characterised [4], showing that three ligands 1 can be accommodated about a larger metal ion.

As an extension of our previous work on pyrazolyl borate complexes of tin [5], we now report the preparation and full characterisation of  $In[(pz)_2-BH_2]_3$  (2) the first neutral tris-chelate complex of this type to be structurally characterised.

#### Experimental

 $K[(pz)_2BH_2]$  was prepared by the standard method [6]. Microanalysis was performed by the University of Otago Microanalytical service. The <sup>115</sup>In NMR spectra were obtained on a Jeol FX90Q spectrometer operating at a resonant frequency of 19.59 MHz and mass spectra on a Varian CH5 spectrometer.

### Preparation of $In[(pz_2)BH_2]_3(2)$

A solution of  $In(NO_3)_3$  (0.41 g, 1.37 mmol) in water (5 ml) was added to a solution of K[(pz)<sub>2</sub>-BH<sub>2</sub>] (0.74 g, 4.01 mmol) in water (10 ml). After 5 min the white precipitate was filtered off, dried and recrystallised from CH<sub>2</sub>Cl<sub>2</sub>/petroleum spirit to give white crystals of 2. Yield: 55%. Anal. Found: C, 38.47; H, 4.78; N, 28.66%; M = 555 (P+, mass spectrum). Calc. for C<sub>18</sub>H<sub>24</sub>B<sub>3</sub>N<sub>12</sub>In: C, 38.90; H, 4.35; N, 30.25%; M = 555. IR (KBr disc):  $\nu$ (BH<sub>2</sub>) 2300(s), 2150(w) cm<sup>-1</sup>. NMR (CDCl<sub>3</sub> solution): <sup>1</sup>H,  $\delta$  7.71, 7.02, (both d, J 2.05 Hz, 3-H, 5-H), 6.16 (t, J 2.05 Hz, 4-H); <sup>13</sup>C  $\delta$  141.05, 137.99 (3-C, 5-C), 104.89 (4-C); <sup>115</sup>In:  $\delta$  120 (*versus* aqueous In(NO<sub>3</sub>)<sub>3</sub>),  $\nu_{1/2}$  4300 Hz.

#### X-ray Structure of 2

A wedge-shaped crystal  $0.65 \times 0.50 \times 0.40$  mm was obtained from CH<sub>2</sub>Cl<sub>2</sub>/hexane. Preliminary precession photography indicated orthorhombic symmetry. Lattice parameters were determined using 25 high-angle reflections, accurately centred on a Nicolet P3 diffractometer with monochromated X-radiation ( $\lambda = 0.7107$  Å).

Crystal data:  $C_{18}H_{24}B_3N_{12}In$ ,  $M_r$  555.72, orthorhombic,  $Pna2_1$ , a = 20.279(4), b = 8.884(2), c =

© Elsevier Sequoia/Printed in Switzerland

| TABLE I. Fina | l Positional | Parameters | for | In | $(pz)_2BH_2]_3$ |
|---------------|--------------|------------|-----|----|-----------------|
|---------------|--------------|------------|-----|----|-----------------|

| Atom  | x          | у          | Z         | Atom  | x         | У          | Z          |
|-------|------------|------------|-----------|-------|-----------|------------|------------|
| In(1) | 0.15204(1) | 0.08813(3) | 0.25000   | C(33) | 0.2755(3) | 0.2838(7)  | 0.3379(5)  |
| B(1)  | 0.0169(3)  | -0.0219(8) | 0.3968(5) | N(41) | 0.1986(2) | -0.1301(5) | 0.1985(4)  |
| N(11) | 0.0573(2)  | -0.0277(5) | 0.2168(3) | N(42) | 0.2650(2) | -0.1534(6) | 0.1859(4)  |
| N(12) | 0.0135(2)  | -0.0755(5) | 0.2868(3) | C(41) | 0.2765(3) | -0.3032(7) | 0.1815(5)  |
| C(11) | -0.0333(2) | -0.1594(6) | 0.2421(6) | C(42) | 0.2184(3) | -0.3805(8) | 0.1934(6)  |
| C(12) | -0.0200(3) | -0.1706(7) | 0.1420(5) | C(43) | 0.1715(3) | -0.2675(8) | 0.2040(5)  |
| C(13) | 0.0375(3)  | -0.0849(7) | 0.1299(5) | B(3)  | 0.0425(4) | 0.3634(8)  | 0.1658(5)  |
| N(21) | 0.1437(2)  | -0.0079(5) | 0.4022(4) | N(51) | 0.1412(2) | 0.2057(5)  | 0.1034(4)  |
| N(22) | 0.0858(2)  | -0.0610(5) | 0.4417(4) | N(52) | 0.0987(2) | 0.3240(6)  | 0.0906(4)  |
| C(21) | 0.0988(3)  | -0.1310(7) | 0.5276(5) | C(51) | 0.1056(3) | 0.3817(7)  | -0.0014(5) |
| C(22) | 0.1658(3)  | -0.1253(7) | 0.5469(5) | C(52) | 0.1535(3) | 0.2984(7)  | -0.0508(5) |
| C(23) | 0.1916(3)  | -0.0479(6) | 0.4657(4) | C(53) | 0.1751(3) | 0.1911(7)  | 0.0175(5)  |
| B(2)  | 0.3133(3)  | -0.0228(8) | 0.1623(5) | N(61) | 0.1119(2) | 0.2983(5)  | 0.3188(3)  |
| N(32) | 0.3122(2)  | 0.0986(5)  | 0.2460(6) | N(62) | 0.0721(2) | 0.3989(5)  | 0.2707(3)  |
| N(31) | 0.2563(2)  | 0.1710(5)  | 0.2774(3) | C(61) | 0.0533(3) | 0.5078(8)  | 0.3343(5)  |
| C(31) | 0.3647(3)  | 0.1669(7)  | 0.2862(5) | C(62) | 0.0822(3) | 0.4817(8)  | 0.4252(5)  |
| C(32) | 0.3441(3)  | 0.2860(8)  | 0.3456(5) | C(63) | 0.1173(3) | 0.3492(8)  | 0.4135(5)  |

TABLE II. Selected Bond Lengths and Angles for In[(pz)<sub>2</sub>BH<sub>2</sub>]<sub>3</sub>

| Bond lengths (Å)      |          |                        |          |   |
|-----------------------|----------|------------------------|----------|---|
| In-N(11)              | 2.224(5) | B(1)-N(12)             | 1.551(8) |   |
| In-N(21)              | 2.218(5) | B(1)-N(22)             | 1.562(8) |   |
| In-N(31)              | 2.269(4) | B(2)-N(32)             | 1.556(9) |   |
| In-N(41)              | 2.264(5) | B(2)-N(42)             | 1.551(8) |   |
| In-N(51)              | 2.237(5) | B(3)-N(52)             | 1.561(8) |   |
| In-N(61)              | 2.236(5) | B(3)-N(62)             | 1.562(8) |   |
| $N(1)-N(2)^{a}$       | 1.369(6) | N(1)-C(3) <sup>a</sup> | 1.343(8) |   |
| $N(2)-C(1)^{a}$       | 1.344(9) | $C(1)-C(2)^{a}$        | 1.379(9) |   |
| $C(2)-C(3)^{a}$       | 1.392(8) |                        |          |   |
| Bond angles (°)       |          |                        |          |   |
| N(11)-In(1)-N(21)     | 86.6(2)  | N(12)-B(1)-N(22)       | 109.8(5) |   |
| N(11)-In(1)-N(31)     | 170.9(2) | N(32)-B(2)-N(42)       | 111.3(5) |   |
| N(11) - In(1) - N(41) | 84.4(2)  | N(52)-B(3)-N(62)       | 110.2(5) |   |
| N(11)-In(1)-N(51)     | 87.5(2)  | N(11) - In(1) - N(61)  | 98.9(2)  |   |
| N(21)-In(1)-N(31)     | 92.7(2)  | N(21)-In(1)-N(41)      | 89.0(2)  |   |
| N(21)-In(1)-N(51)     | 168.7(2) | N(21)-In(1)-N(61)      | 85.1(2)  |   |
| N(31)-In(1)-N(41)     | 86.5(2)  | N(31)-In(1)-N(51)      | 94.7(2)  |   |
| N(31)-In(1)-N(61)     | 90.1(2)  | N(41)-In(1)-N(51)      | 99.9(2)  |   |
| N(41)-In(1)-N(61)     | 173.0(2) | N(51)-In(1)-N(61)      | 86.4(2)  | _ |

<sup>a</sup>Averaged over all rings.

13.411(2) Å, U = 2416.1(9) Å<sup>3</sup>.  $D_{e} = 1.528$ ,  $D_{m} = 1.50$  g cm<sup>-3</sup>, Z = 4. F(000) 1120,  $\mu(Mo K\alpha) = 9.8$  cm<sup>-1</sup>, T = 163 K.

A total of 2452 unique reflections were collected in the range  $5^{\circ} < 2\theta < 52^{\circ}$  and were corrected for Lorentz, polarisation and absorption effects (based on a series of  $\phi$  scans). Of these, 2101 had  $I > 3\sigma(I)$ , and were used in all calculations.

The position of the In atom was located from a Patterson map. A subsequent difference map was complicated by false symmetry, but the complete molecule was gradually developed. In the final cycles of full-matrix least-squares refinement the In atom was assigned an anisotropic temperature factor, while other atoms were isotropic, with H atoms included in calculated positions with common temperature factors for each type. The refinement converged at R = 0.0285,  $R_w = 0.0281$  where  $w = [\sigma^2(F) + 0.00016 F^2]^{-1}$ , largest  $\Delta/\sigma$  0.01, largest feature in final difference map 0.7 e Å<sup>-3</sup>. A refinement cycle with inverted coordinates gave higher R values showing the original polarity of the crystal was the correct one. All calculations were performed with SHELX-76 [7], using scattering factors and  $\Delta f'$  and  $\Delta f''$  values



Fig. 1. A view of In[(pz)<sub>2</sub>BH<sub>2</sub>]<sub>3</sub>, showing atom labelling.

taken from International Tables, while equations of planes were calculated using PARST [8]. Final positional parameters are given in Table I, with selected bond parameters in Table II. The geometry and atom numbering is shown in Fig. 1 while Fig. 2 is a stereo diagram viewed down a pseudo three-fold axis of the molecule.

## **Results and Discussion**

The preparation of  $In[(pz)_2BH_2]_3$  (2) was straightforward, the product precipitating from an aqueous solution containing the ligand  $[(pz)_2BH_2]^-$  and  $In^{3+}$  ions in the stoichiometric ratio. The crude product is fairly soluble in polar organic solvents and could be recrystallised from  $CH_2Cl_2$ /hexane to give highmelting white crystals. The preparation in aqueous solution reflects good stability to hydrolysis, in contrast to anionic tris-chelate analogues such as  $K[Ni\{(pz)_2BH_2\}_3]$  which react instantly with water [3a] although the corresponding  $Et_4N^+$  salts are apparently more stable [3b].

The spectroscopic properties of 2 are given in 'Experimental'. A clean mass spectrum was obtained showing a parent ion and fragment ions resulting

from successive losses of  $(pz)BH_2$  and  $(pz)_2BH_2$ . The <sup>1</sup>H and <sup>13</sup>C NMR spectra were similar to those in which  $[(pz)_2BH_2]^-$  is attached to tin [5]. The assignment of the H and C signals from the 4-position of the ring is obvious but those from the 3,5positions are not readily distinguished [2,9].

The <sup>115</sup>In NMR spectrum gave a broad signal at  $120 \pm 10$  ppm downfield from aqueous In<sup>3+</sup>. There appear to be few reported NMR spectra for six-coordinate indium, most attention having been devoted to InX<sub>4</sub><sup>-</sup> species [10]. Little can therefore be said about the  $\delta$  value observed for 2, but the broadness of the signal (4300 Hz compared with 2000 Hz for In(H<sub>2</sub>O)<sub>6</sub><sup>3+</sup>) indicates that the coordination environment is markedly distorted from regular octahedral, a conclusion consistent with the structural results in the solid state.

The structure of  $In[(pz)_2BH_2]_3$  shows the metal atom to be six-coordinated by the six nitrogen atoms of three [(pz)<sub>2</sub>BH<sub>2</sub>]<sup>-</sup> ligands. In-N bonds range from 2.219(5) to 2.268(5) Å (average 2.241(5) Å) and N-In-N angles lie between 84.5(2)° and 99.9(2)° for adjacent sites and 168.7(2)° to 173.0(2)° for opposite sites, so distortions from octahedral geometry are significant. The In-O distances in In(acac)<sub>3</sub> are 2.128 Å [11] so the In-N distances in 2 are probably about 0.1 Å longer than would be expected in a less sterically crowded system. All the pyrazolyl rings are essentially planar but the In and B atoms are twisted from these planes by 0.10-0.53 and 0.10-0.27 Å respectively. The dihedral angles between pyrazolyl planes within each ligand are 133.8° (rings 1, 2) 141.2° (rings 3, 4) and 143.9° (rings 5, 6). These values are much larger than are usually found for  $[(pz)_2BH_2]^-$  ligands in less crowded molecules; for example in Me<sub>2</sub>ClSn [(pz)<sub>2</sub>-BH<sub>2</sub>], with a metal atom of comparable size, the dihedral angle between the pz rings is  $119^{\circ}$  [5], and it is even lower in Cr[(pz)<sub>2</sub>BH<sub>2</sub>]<sub>2</sub> at  $115^{\circ}$  [4]. In 2, the puckering is not in the same sense for each of the ligands. From Fig. 2 it can be seen that B(2) and B(3) are displaced from their ligands in a clockwise



Fig. 2. A stereo view of 2 viewed down the pseudo three-fold axis.

sense, while B(1) is displaced in the opposite direction.

A comparison of the structure of 2 with that of  $[V\{(pz)_2BH_2\}_3]^-$  shows close similarities [4]. The V-N distances are slightly shorter (2.17 Å) than the equivalent In-N (2.24 Å) reflecting the smaller radius of V(II), *cf.* In(III). The puckering of the individual ligands is more variable in the vanadium example, with dihedral angles between the two halves of the ligands ranging from 128° to 158°, although again the bending is in the opposite sense for one of the ligands compared with the other two. This is therefore probably a necessary intramolecular consequence rather than a crystal packing effect.

The relatively long In-N bonds and the flattened ligands found in the structure of 2 can be understood in terms of a crowded coordination sphere. There has to be a compromise between a need to pucker the ligands to provide a good chelating geometry, while minimising inter-ligand interactions which would be best achieved by planar ligands. Only larger metal ions will therefore be able to form complexes of the type  $M[(pz)_2BH_2]_3$  and consistent with this we find that  $Ga^{3+}$  forms an analogue of 2, but the corresponding reaction of  $Al^{3+}$  with  $[(pz)_2BH_2]^-$  gives different, as yet uncharacterised, products.

#### Supplementary Material

Full tables of crystallographic data are available on request from the authors.

#### Acknowledgements

We thank Dr W. T. Robinson, University of Canterbury, for collection of X-ray intensity data. Financial support from the New Zealand Universities Grants Committee is gratefully acknowledged.

#### References

- S. Trofimenko, Acc. Chem. Res., 4, 17 (1971); Chem. Rev., 72, 497 (1972); Adv. Chem. Ser., 150, 289 (1976); Prog. Inorg. Chem., 34, 115 (1986); K. Miedenzu and S. Trofimenko, Topics Curr. Chem., 131, 1 (1986).
- 2 S. Trofimenko, J. Am. Chem. Soc., 89, 3170 (1967), and refs. therein; D. J. Patmore, D. F. Rendle and J. Trotter, J. Chem. Soc., Dalton Trans., 718 (1975).
- 3 (a) J. R. Jezorek and W. H. McCurdy, Inorg. Chem., 14, 1939 (1975); (b) F. Mani, Inorg. Chim. Acta, 117, L1 (1986).
- 4 P. Dapporto, F. Mani and C. Mealli, *Inorg. Chem.*, 17, 1323 (1978).
- 5 S. K. Lee and B. K. Nicholson, J. Organomet. Chem., 309, 257 (1986).
- 6 S. Trofimenko, Inorg. Synth., 12, 99 (1970).
- 7 G. M. Sheldrick, 'SHELX-76', program for crystal structure determination, University of Cambridge, 1976.
- 8 M. Nardelli, 'PARST', a system of fortran routines for calculating molecular parameters from the results of crystal structure analyses, University of Parma, 1985.
- 9 A. J. Canty, N. J. Minchin, J. M. Patrick and A. H. White, Aust. J. Chem., 36, 1107 (1983).
- 10 R. K. Harris and B. E. Mann, 'NMR and the Periodic Table', Academic Press, London, 1978, pp. 286-288.
- 11 J. G. Rodriguez, F. F. Cano and S. Garcia-Blanco, Cryst. Struct. Commun., 8, 53 (1979); C. Sreelatha, V. D. Gupta, C. K. Narula and H. Noth, J. Chem. Soc., Dalton Trans., 2623 (1985).