Synthesis and Properties of Dialkoxydinitrosylmolybdenum Compounds and their Derivatives

A. KELLER

Institute of Chemistry, University of Wrocław, Poland (Received April 7, 1988)

The reactions of $[Mo(NO)_2(MeNO_2)_4](BF_4)_2$ with M^IOR ($M^I = Li$, Na; R = bulky groups) in suitable alcohols produce the dinitrosylmolybdenum compounds of the empirical formula $Mo(NO)_2(OR)_2$

$$[Mo(NO)_{2}(MeNO_{2})_{4}](BF_{4})_{2} \xrightarrow{2M^{I}OR, ROH} -M^{I}BF_{4} \longrightarrow Mo(NO)_{2}(OR)_{2} \quad (1)$$

R = bulky groups

Such a reaction produced the $Mo(NO)_2(O.i.Pr)_2$ complex. When R is one of the less sterically demanding groups, e.g. R = Me or Et, compounds of the empirical formula $Mo(NO)_2(OR)_2S$ would arise (S = donor solvent—the reaction medium)

$$[Mo(NO)_{2}(MeNO_{2})_{4}](BF_{4})_{2} \xrightarrow{2M^{1}OR, S}{-2M^{1}BF_{4}}$$

Mo(NO)_{2}(OR)_{2}S (2)

R = n-alkyl groups

The equivalent reaction is

$$[Mo(NO)_{2}S_{4}](BF_{4})_{2} \xrightarrow{2M^{1}OR}_{-2M^{1}BF_{4}} Mo(NO)_{2}(OR)_{2}S \quad (3)$$

R = n-alkyl groups

In reaction (2) and reaction (3) compounds of the empirical formula $Mo(NO)_2(OEt)_2(EtOH)$ and $Mo(NO)_2(OMe)_2(MeCN)$ were obtained, respectively.

Reactions (4) and (5) can be general reactions to obtain other dialkoxydinitrosyl derivatives of molybdenum, e.g. $Mo(NO)_2(OEt)_2(OPPh_3)$

$$[Mo(NO)_{2}(MeNO_{2})_{4}](BF_{4})_{2} \xrightarrow{L, M^{I}OR}_{-2M^{I}BF_{4}} Mo(NO)_{2}(OR)_{2}L \quad (4)$$

$$[Mo(NO)_{2}S_{2}L_{2}](BF_{4})_{2} \xrightarrow[-L, M^{1}BF_{4}]{} Mo(NO)_{2}(OR)_{2}L \quad (5)$$

The compounds obtained in reactions (2)-(5) are green $(Mo(NO)_2(OMe)_2(MeCN)$ is brown-green) and react very slowly with the air, moisture and

0020-1693/88/\$3.50

oxygen. They are insoluble in alkanes and easily soluble in $C_nH_{2(n+1)}-mCl_m$, C_6H_5Cl (Mo(NO)₂-(OMe)₂(MeCN) is less soluble in the chlorosubstituted solvents) and C_6H_6 except for Mo(NO)₂(OEt)₂-(OPPh₃) and Mo(NO)₂(OMe)₂(MeCN) which are sparingly soluble in the latter solvent.

A cryoscopic molecular weight determination suggests the existence of tetrameric $\{Mo(NO)_2(O:I-Pr)_2\}_4$, octameric $\{Mo(NO)_2(OEt)_2(EtOH)\}_8$ and dimeric $\{Mo(NO)_2(OEt)_2(PPh_3)\}_2$ species. $Mo(NO)_2(OMe)_2(MeCN)_2$ is most likely the polymeric compound.

At 150 °C in vacuo $(5 \times 10^{-3} \text{ mm Hg}) \{Mo(NO)_2 \cdot (OEt)_2(EtOH)\}_n \text{ loses EtOH to produce the brown compound formulated as } \{Mo(NO)_2(OEt)_2\}_n$. Undoubtedly, it is highly polymerized. It is insoluble in alkenes and benzene, very sparingly soluble in C_6H_5Cl and $C_nH_{2(n+1)-m}Cl_m$.

The IR spectra of all these complexes exhibit two strong bands in the $\nu(NO)$ region attributable to *cis*-nitrosyl ligands [1,2]. The character of the spectra in the $\nu(OR)$ region corresponds to the polymeric structure [3].

All of the complexes are diamagnetic and give a very complex ¹H NMR spectra (at 25 °C). The lack of well resolved resonances of terminal and bridging alkoxy groups (R = Et, O-i-Pr) is probably due to the terminal \neq bridge OR ligand exchange [4, 5]. For {Mo(NO)₂(OEt)₂(EtOH)}_n no resonances of OH groups were identified.

In the ¹³C NMR spectra of $\{Mo(NO)_2(O-i-Pr)_2\}_4$ and $\{Mo(NO)_2(OEt)_2(EtOH)\}_8$ (at 25 °C) four methyne and nine methylene carbon signals were obtained, respectively. The ³¹P NMR spectrum of $\{Mo(NO)_2(OEt)_2(OPPh_3)\}_2$ exhibits only one singlet. IR and NMR data are given in 'Experimental'.

Up to now obtained data do not allow us to propose the univocal structure of these complexes, because a number of structures may be ruled out by these observations.

These complexes form with $EtAlCl_2$ the catalytic systems active in the metathesis of pentene-2. The metathesis equilibrium [6] was established after a reaction time of 15 min for $\{Mo(NO)_2(O-i-Pr)_2\}_n$ and $\{Mo(NO)_2(OEt)_2(EtOH)\}_n$, 5 min for $\{Mo(NO)_2-(OEt)_2(OPPh_3)\}_2$ and only 1 min for $\{Mo(NO)_2-(OMe)_2(MeCN)\}_n$.

Experimental

All reactions were carried out under a dried and purified argon atmosphere. The $[Mo(NO)_2(Me-NO_2)_4](BF_4)_2$ and $[Mo(NO)_2(MeCN)_2(OPPh_3)_2]$ - $(BF_4)_2$ complexes [7] and $[Mo(NO)_2(MeCN)_4]$ - $(BF_4)_2$ [8] were prepared by published methods.

© Elsevier Sequoia/Printed in Switzerland

IR: Specord M80; ¹H NMR: Tesla BS576A; ¹³C NMR: Jeol JNM-PS-100; Molecular weight: Perkin-Elmer 115; Magnetic susceptibility: Gouy methods; GLC: Chromatograph N-503, ELPO.

Synthesis of $\{Mo(NO)_2(O-i-Pr)_2\}_n$

To $[Mo(NO)_2(MeNO_2)_4](BF_4)_2$ (5 mmol) dissolved at 0 °C in i-PrOH (10 ml), the solution of M^IO -i-Pr (M^I = Li or Na; 10.1 mmol) in i-PrOH was slowly added at 0 °C. At that temperature the reaction mixture was stirred for 15 min. The solution was filtered off and removed under vacuum. The complex was extracted from the remnant with a small amount of CH₂Cl₂. The green complex was precipitated with hexane.

Synthesis of $\{Mo(NO)_2(OEt)_2(EtOH)\}_n$

This complex was obtained in a similar manner to that described above, *i.e.* by treatment of [Mo- $(NO)_2(MeNO_2)_4$](BF₄)₂ with M^IOEt (M^I = Li or Na) in EtOH at 0 °C.

Synthesis of $\{Mo(NO)_2(OMe)_2(MeCN)\}_n$

To $[Mo(NO)_2(MeCN)_4](BF_4)_2$ (2.50 mmol) in MeCN (5 ml), cooled down to 0 °C, was added dropwise NaOMe (5.06 mmol) in MeOH. The resulting yellow-green solution was stirred for 15 min at 0 °C. Subsequent procedure as above.

Synthesis of $\{Mo(NO)_2(OEt)_2(OPPh_3)\}_2$

Procedure A. $[Mo(NO)_2(MeNO_2)_4](BF_4)_2$ (2.44 mmol) dissolved in MeNO₂ (20 ml) was treated with Ph₃PO (4.9 mmol). The solution was stirred for 30 min, next cooled to 0 °C and treated with M^IOEt (M^I = Li or Na; 5.0 mmol) in EtOH. After 15 min the solution was filtered off and removed under vacuum. The solids were treated with CH₂Cl₂ (10 ml) and the CH₂Cl₂—insoluble part was filtered off. The green complex was precipitated with hexane from the filtrate. The product was purified by repeated precipitation from CH₂Cl₂ solutions with hexane.

Procedure B. To the cooled (0 °C) solution of $[Mo(NO)_2(MeCN)_2(OPPh_3)_2](BF_4)_2$ (2.5 mmol) in EtOH (10 ml), the solution of M^IOEt (M^I = Li or Na; 5.10 mmol) in EtOH was slowly added. Procedure A was then followed.

Analytical Data

Calc. for $Mo(NO)_2(O-i-Pr)_2$: Mo, 35.00; N, 10.22; C, 26.29; H, 5.15. Found: Mo, 34.89; N, 10.01; C, 26.39; H, 5.30%. Calc. for $Mo(NO)_2(OEt)_2(Et-OH)$: Mo, 32.84; N, 9.59; C, 24.67; H, 5.52. Found: Mo, 32.76; N, 9.30; C, 24.41; H, 5.70%. Calc. for $Mo(NO)_2(OMe)_2(MeCN)$: Mo, 37.03; N, 16.22; C, 18.54; H, 3.50. Found: Mo, 36.89; N, 16.01; C, 18.70; H, 3.89%. Calc. for $Mo(NO)_2(OEt)_2$ -(OPPh₃): Mo, 18.30; N, 5.34; C, 50.39; H, 4.81; P, 5.91. Found: Mo, 18.22; N, 5.01; C, 50.63; H, 5.02; P, 6.02%. Calc. for Mo(NO)₂(OEt)₂: Mo, 38.99; N, 11.38; C, 19.52; H, 4.10. Found: Mo, 38.91; N, 11.15; C, 19.40; H, 4.41%.

Infrared Data

IR data obtained in Nujol mulls. {Mo(NO)2- $(O-i-Pr)_n$: 2 × $v_s(NO)$, 3540vw; $v_s + v_{as}(NO)$, 3405w; v(NO), 1772s, 1630vs, br; v(O-i-Pr), 1110s, 1030m, 944s; also: 1265vw, 1234w, 1170sh, 1164m, 830m, 770w, 650m, 610sh, 586m, 500sh, 460m, br. {Mo- $(NO)_2(OEt)_2(EtOH)\}_n$: 2 × $\nu_s(NO)$, 3480vw; ν_s + vas(NO), 3352w; v(OH), 3250br; v(NO), 1740vs, 1616vs, br; v(O-Et), 1083s, 1050sh, 1027vs; also: 1149m, 970sh, 872s, 750sh, 644m, 610sh, 565s, br, 530sh, 475m. $\{Mo(NO)_2(OEt)_2\}_n: 2 \times \nu_s(NO),$ 3495vw; $v_s + v_{as}(NO)$, 3365w; v(NO), 1745s, 1620vs, br; v(O-Et), 1080s, 1030vs; also: 1152m, 970sh, 880m, 760sh, 630m, 610sh, 580s, br, 520sh, 460m, $\{Mo(NO)_2(OMe)_2(MeCN)\}_n: 2 \times \nu_s(NO),$ 425sh. 3510vw; $v_s + v_{as}(NO)$, 3360vw; v(CN), 2280vw; ν (NO), 1753s, 1605vs; ν (O-Me), 1065s, 1020vs; also: 1223m, 1163m, 966sh, 840m, 765w, 650w, 590m, 490s, br. $\{Mo(NO)_2(OEt)_2(OPPh_3)\}_2$: $\nu(NO)$, 1750s, 1610vs, br; v(P-O), 1120s, 1045sh; v(O-Et), 1080s, 1025s; also: 2150w, 1980vw, 1310w, 1274w, 1140w, 985m, 970m, 880m, 850sh, 740m, 685m, 615w, 580sh, 520s, br, 450m.

NMR Data

¹H NMR data were obtained in CDCl₃ at 25 °C relative to Me₄Si. { $Mo(NO)_2(O-i-Pr)$ }_n: $\delta(CH_3)$ 1.21; $\delta(CH)$ 4.24, 4.55. { $Mo(NO)_2(OEt)_2(EtOH)$ }_n: $\delta(CH_3)$ 1.22; $\delta(CH_2)$ 4.23. { $Mo(NO)_2(OEt)_2$ }_n: $\delta(CH_3)$ 1.27; $\delta(CH_2)$ 4.17. { $Mo(NO)_2(OMe)_2(Me-CN)$ }_n: $\delta(CH_3CN)$ 1.96, 2.15; $\delta(OCH_3)$ 3.45, 3.65, 3.85, 4.00. { $Mo(NO)_2(OEt)_2(OPPh_3)$ }₂: $\delta(CH_3)$ 1.19; $\delta(CH_2)$ 4.00, 4.20; $\delta(C_6H_5)$ 7.3–7.8.

¹³C NMR data were obtained at 25 °C in benzened₆ relative to Me₄Si. {Mo(NO)₂(O-i-Pr)₂}_n: δ (Cmethyl) 24.12, 24.42, 25.61, 25.91, 26.29; δ (Cmethyne) 75.80(1), 81.94(1), 83.45(1), 84.25(1). {Mo(NO)₂(OEt)₂(EtOH)}_n: δ (C-methyl) 19.30, 21.85; δ (C-methylene) 58.82(1), 64.72(1), 68.38(1), 69.65(2), 70.18(2), 70.92(2), 75.70(1), 76.36(1), 77.10(1).

The ³¹P NMR spectrum of $\{Mo(NO)_2(OEt)_2$ -(OPPh₃) $\}_2$ was obtained at 25 °C in CDCl₃ relative to H₃PO₄. δ (P) 45.06(s).

Metathesis Reaction

EtAlCl₂ (1.50 mmol) in chlorobenzene was injected into the cooled down (0 °C) solution of the complex (0.25 mmol) in chlorobenzene (5 ml). After 15 min (room temperature) pentene-2 (100 mmol) was added to the solution. Samples taken after t_r (reaction time) were hydrolyzed to stop the reaction and analyzed.

References

- 1 M. O. Visscher and K. G. Caulton, J. Am. Chem. Soc., 94, 5923 (1972).
- 2 D. Ballivet-Tkatchenko, C. Bremard, F. Abraham and G. Nowogrocki, J. Chem. Soc., Dalton Trans., 1137 (1983).
- 3 D. C. Bradley, Proc. Symp. Coord. Chem., 1964 (1965).
- 4 M. H. Chisholm, F. A. Cotton, M. W. Extine and R. L. Kelly, J. Am. Chem. Soc., 100, 3354 (1978).
- 5 D. C. Bradley, C. W. Newing, M. H. Chisholm, R. L. Kelly, D. A. Haitko, D. Little, F. A. Cotton and P. E. Fanwick, *Inorg. Chem.*, 19, 3010 (1980).
- 6 W. B. Hughes, J. Am. Chem. Soc., 92, 532 (1970).
- 7 P. Legzdins and J. C. Oxley, Inorg. Chem., 23, 1053 (1984).
- 8 A. Sen and R. Thomas, Organometallics, 1, 1251 (1982).