Synthesis and Structure of a *trans*-Molybdenum Complex with Two Different Phosphine Ligands: *trans*-Mo(CO)<sub>4</sub>(PPh<sub>2</sub>NH<sub>2</sub>)(PPh<sub>2</sub>F)

F. C. BRADLEY, E. H. WONG\*

Depratment of Chemistry, University of New Hampshire, Durham, N.H. 03824, U.S.A.

E. J. GABE\*\* and F. L. LEE

Chemistry Division, National Research Council of Canada, Ottawa, Ont. K1A OR9, Canada

(Received June 17, 1986)

Kraihanzel and coworkers have reported that the reaction of cis-Mo(CO)<sub>4</sub>(PPh<sub>2</sub>NH<sub>2</sub>)<sub>2</sub> with boron trifluoride etherate resulted in deamination and formation of a PNP chelate ring in the product, Mo(CO)<sub>4</sub>(Ph<sub>2</sub>PNHPPh<sub>2</sub>) [1]. Similar formation of PNP groups from the trans-isomer may generate linked polymetallic complexes. Instead we have found that the same reaction using trans-Mo(CO)4- $(PPh_2NH_2)_2$  yielded the fluoride-exchanged product,  $trans-Mo(CO)_4(PPh_2NH_2)(PPh_2F)$  (1), as the only major isolated product. Structural data of trans-metal carbonyl complexes are relatively rare, especially those with two different phosphine ligands. Determination of the structure of 1 therefore allows a direct comparison of the coordination of an aminophosphine versus a fluorophosphine within the same complex.

## **Results and Discussion**

Addition of two equivalents of  $BF_3 \cdot OEt_2$  to trans-Mo(CO)<sub>4</sub>(PPh<sub>2</sub>NH<sub>2</sub>)<sub>2</sub> in THF gave a cloudy solution after 1 h. Workup of the reaction mixture afforded a 50% yield of a tan powder, complex 1<sup>+</sup>. It exhibited proton resonances at 7.73(m) and 2.90(s) ppm; <sup>31</sup>P signals at 201.3 ppm (doublet of doublets, <sup>1</sup>J<sub>PF</sub> = 868 Hz, <sup>2</sup>J<sub>PP</sub> = 76 Hz) and 73.5 ppm (doublet of doublets, <sup>3</sup>J<sub>PF</sub> = 2 Hz) as well as <sup>19</sup>F resonance at 139.7 ppm (referenced to external trifluoracetic anhydride, doublet with <sup>1</sup>J<sub>PF</sub> = 867 Hz). Its infrared spectrum in the carbonyl stretching region included absorptions at 2025(w), 1969(w), and 1916(s) cm<sup>-1</sup> (CH<sub>2</sub>Cl<sub>2</sub> solution). N–H stretches are at 3458 and 3349 cm<sup>-1</sup> (KBr). An analogous product can be obtained from *trans*-Mo(CO)<sub>4</sub>(PPh<sub>2</sub>-NMeH)<sub>2</sub> and BF<sub>3</sub>·OEt<sub>2</sub>.<sup> $\neq$ </sup>

Colorless rhombohedral plates of 1 were grown from warm ether/hexane solutions. Crystal data:  $MoP_2FO_4NC_{28}H_{22}$ , space group monoclinic (P2<sub>1</sub>/c), a = 14.837(1), b = 10.935(1), c = 17.391(2) Å,  $\beta =$  $104.74(1)^{\circ}$ , Z = 4. The structure was solved by application of MULTAN using 4286 significant reflections and refined to a final  $R_F$  value of 0.039 and  $R_{WF}$  value of 0.030. The amino hydrogens were not located. The molecular structure is shown in Fig. 1. Important bond lengths and angles are listed in Table I. The metal-phosphorus bond of PPh<sub>2</sub>F at 2.414(1) Å is 0.06 Å shorter than the one to  $PPh_2NH_2$  at 2.471(1) Å, consistent with the superior metal bonding ability of the fluorophosphine. Average P-phenyl distance for the PPh<sub>2</sub>F ligand is 1.811(3) Å as compared to 1.835(2) Å for PPh<sub>2</sub>-NH<sub>2</sub>, indicative of more phenyl-to-phosphorus donation in the former. The metal carbonyl distances range from 2.005(4) to 2.035(4) Å. A slight deviation from linearity of the trans-ligands is indicated



Fig. 1. Molecular structure of *trans*-Mo(CO)<sub>4</sub>(PPh<sub>2</sub>NH<sub>2</sub>)-(PPh<sub>2</sub>F), (1).

<sup>\*</sup>Author to whom correspondence should be addressed.

<sup>\*\*</sup>National Research Council of Canada, NRC No. 00000.

<sup>&</sup>lt;sup>†</sup>*Anal.* Calc. for C<sub>28</sub>H<sub>22</sub>FMoNO<sub>4</sub>P<sub>2</sub>: C, 54.83; H, 3.62; N, 2.28. Found: C, 55.14; H, 3.48; N, 2.28%.

<sup>&</sup>lt;sup>≠</sup>A 65% yield of *trans*-Mo(CO)<sub>4</sub>(PPh<sub>2</sub>NHMe)(PPh<sub>2</sub>F) can be similarly obtained. Spectral data: IR(CO) 2025(w), 1976-(w), 1930(w), 1918(s) cm<sup>-1</sup>; <sup>31</sup>P NMR 207.2 (doublet of doublets, <sup>1</sup>J<sub>PF</sub> = 859, <sup>2</sup>J<sub>PP</sub> = 73 Hz) and 89.4 (<sup>3</sup>J<sub>PF</sub> = 2 Hz). *Anal.* Calc. for C<sub>29</sub>H<sub>24</sub>FMoNO<sub>4</sub>P<sub>2</sub>: C, 55.52; H, 3.86; N, 2.23. Found: C, 55.28; H, 3.87; N, 2.26%.

TABLE I. Bond Distances (Å) and Angles (°)<sup>a</sup>

| Bond distances |          |              |          |
|----------------|----------|--------------|----------|
| Mo-P(1)        | 2.471(1) | P(1)-N       | 1.671(3) |
| Mo-P(2)        | 2.414(1) | P(1)-C(11)   | 1.838(4) |
| Mo-C(1)        | 2.023(4) | P(1)-C(21)   | 1.832(4) |
| MoC(2)         | 2.019(4) | P(2)-F       | 1.614(2) |
| Mo-C(3)        | 2.035(4) | P(2) - C(31) | 1.816(4) |
| MoC(4)         | 2.005(4) | P(2)-C(41)   | 1.806(4) |
| Bond angles    |          |              |          |
| P(1)-Mo-P(2)   | 173.1(1) | C(1)-Mo-C(2) | 97.2(2)  |
| P(1)MoC(1)     | 87.4(1)  | C(2)-Mo-C(3) | 88.1(2)  |
| P(1)-Mo-C(2)   | 87.1(1)  | C(3)-Mo-C(4) | 86.5(2)  |
| P(1)-Mo-C(3)   | 97.9(1)  | C(4)-Mo-C(1) | 88.5(2)  |
| P(1)-Mo-C(4)   | 90.1(1)  | Mo-P(1)-N    | 113.1(1) |
|                |          | Mo-P(2)-F    | 114.8(1) |

<sup>a</sup>Standard deviations are in parentheses.

by the P-Mo-P angle of  $173.1(1)^\circ$ . Intermolecular hydrogen-bonding is not observed in the cell packing.

The different reaction courses of *cis*- and *trans*- $Mo(CO)_4(PPh_2NH_2)_2$  with boron trifluoride can be rationalized. Initial coordination of BF<sub>3</sub> to the

amino group in both cases seems reasonable. Subsequent fluoride exchange has precedence in the thermally unstable N-coordinated adduct of  $BF_3$ with  $PF_2(NMe_2)$  to give  $(Me_2NBF_2)_2$  and  $PF_3$  [2].

$$PF_{2}(NMe_{2}) + BF_{3} \longrightarrow PF_{2}(NMe_{2} \cdot BF_{3}) \longrightarrow$$
$$PF_{3} + 0.5(NMe_{2}BF_{2})_{2}$$

Greenwood and Robinson have also noted a fluoride exchange in the adducts of  $BF_3$  with amino(trifluoromethyl)phosphines [3]. Therefore it is likely that a similar process generated complex 1. By contrast, the proximity of a second amino group in the *cis*adduct apparently led to intramolecular nucleophilic displacement at P instead, resulting in ring closure and probable loss of  $BF_3 \cdot NH_3$ .

## References

- 1 G. M. Gray and C. S. Krainhanzel, J. Organomet. Chem., 238, 209 (1982).
- 2 S. Fleming and R. W. Parry, Inorg. Chem., 11, 1 (1972).
- 3 N. N. Greenwood and B. H. Robinson, J. Chem. Soc. A, 226 (1968).