Ring Opening Reactions of Tetrahydrofurane with Phosphorus Halides

PAUL PERINGER* and PETER-PAUL WINKLER

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

(Received August 2, 1985; revised April 2, 1986)

The reaction of THF with $P(O)Cl_3$ or PX_3 (X = Cl, Br) affords $P(O)Cl_{3-n}[O(CH_2)_4Cl]_n$, n = 1-3 or $PX_{3-n}[O(CH_2)_4X]_n$, n = 1,2, respectively; in the presence of mercury(II) halides the reaction of THF and PBr₃ leads to the phosphorus acid ester $P[P(O)-(O(CH_2)_4Br)_2]_3$.

Ring opening of the strained three- and fourmembered ring ethers with phosphorylchloride is well known [1-3] and leads to ω -chloroalkyl phosphates, which are useful as fire retardants and plasticizers. There are no reports concerning this reaction involving the essentially nonstrained tetrahydrofurane (THF). The five-membered ring is known to be stable to ring opening, except for conditions that cause ether cleavage reactions of open chain ethers.

We found reaction (1) (n = 1) to proceed slowly at ambient temperature. This reaction is efficiently cata-

$$P(O)Cl_3 + n \left\langle O \right\rangle \longrightarrow P(O)Cl_{3-n} \left[O(CH_2)_4 Cl \right]_n (1)$$

lyzed by mercury(II) halides leading to $P(O)Cl_{3-n}$ - $[O(CH_2)_4Cl]_n$ with n = 1 and also to products with n = 2 and 3. The ring opening of THF by alkyl halides and Hg(II) salts has been reported by Watanabe *et al.* [4]. They proposed the initial formation of an O alkyltetrahydrofuranium ion followed by the SN2-like attack by the mercurate as the reaction pathway. A corresponding mechanism may possibly be effective for the title reaction. In a side reaction, polymerization of THF takes place. The polymerization of THF catalyzed by other phosphorus compounds has been reported [5-8].

Phosphorous chloride reacts with THF in the presence of a catalyst according to eqn. (2) (X = Cl, n = 1) [9]. We found that this reaction also

$$PX_3 + n \bigvee_{0} \longrightarrow PX_{3-n}[O(CH_2)_4X]_n \quad (2)$$

proceeds in the absence of a catalyst but at a slower rate compared with $P(O)Cl_3$. Phosphorous bromide reacts much faster (see Table I) according to eqn. (2) (X = Br, n = 1 [10] and 2). Mercury(II) halides

TABLE I. Reaction of PX₃ with THF^a

x	Molar ratio PX3 : THF	Time	Products (%)		
			X_2 PO(CH ₂) ₄ X	XP(O(CH ₂) ₄ X) ₂	
Cl	1.3	20 d ^b	trace	_	
Br	1:1	2 d	25		
Br	1:2	2 d	35	trace	
Br	1:3	2 d	40	trace	
Br	1:10.5	3 d	80	20	

^aAmbient temperature; percentages obtained by integration of ³¹P NMR signals. ^bd = day.

TABLE II. Reaction of PCl₃ with THF Catalyzed by HgX₂^a

x	Molar ratio PCl3:THF:HgX2	Time	Cl ₂ PO(CH ₂) ₄ Cl (%)
Cl	1:3:0.05	20 d ^c	10 ^b
Br	1:3:0.05	20 d	40
1	1:3:0.05	20 d	50
C1	1:3:saturated	20 d	10
Br	1:3:saturated	30'	80
1	1:3:saturated	6 d	70

^aAmbient temperature. ^b70% after 2 d reflux. ^cd = day.

again catalyze the reaction with PCl₃ (see Table II) leading to the products n = 1, 2 eqn. (2). The catalytic activity increases in the order HgCl₂ < HgBr₂ < HgI₂. In contrast, the reaction of PBr₃ with THF catalyzed by mercury halides leads to the phosphorus acid ester 1. Other esters (e.g. Et) of this phosphorus

$$P \left[\begin{array}{c} O \\ P \left[\begin{array}{c} O \\ O(CH_2)_4 Br \\ O(CH_2)_4 Br \end{array} \right]_3$$

acid were first obtained by Fluck *et al.* [11] from PX₃ and HP(O)(OR)₂ in the presence of a base. The product 1 seems to be formed via the phosphorous acid triester (n = 3, eqn. (2)), which either reacts with PBr₃ according to eqn. (3) [12] or with HgX₂ to yield the asymmetric phosphito-P mercury com-

$$3P[O(CH_2)_4Br]_3 + PBr_3 \longrightarrow 1 + 3Br(CH_2)_4Br \quad (3)$$

 $P[O(CH_2)_4Br]_3 + HgX_2 \longrightarrow$

$$XHgP(O)[O(CH_2)_4Br]_2 + Br(CH_2)_4Br \qquad (4)$$
2

pound 2 (eqn. (4)) [13], which in turn reacts with PBr_3 according to eqn. (5):

^{*}Author to whom correspondence should be addressed.

$$3XHgP(O)[O(CH_2)_4Br]_2 + PBr_3 \longrightarrow 1 + 3XHgBr$$
(5)

Halide exchange reactions between HgX_2 and PY_3 (eqn. (6)) are observed whenever Y is heavier than X.

$$HgX_{2} + PY_{3} \longrightarrow HgXY + PXY_{2}$$

$$HgY_{2} \quad PX_{2}Y \qquad (6)$$

$$PY_{3}$$

According to preliminary results, ether cleavage of open chain ethers with phosphorus halides also occurs.

Experimental

Analytical grade chemicals (Merck) were used. THF was dried and distilled before use. The reactions were monitored and the products were characterized by ¹³C and ³¹P NMR spectroscopy on a multinuclear Bruker WP 80 instrument operating in the FT mode. P(O)[O(CH₂)₄Cl]Cl₂ (δ (³¹P): 0.0, δ (¹³C): C-1: 71.5, C-2: 27.7, C-3: 30.8, C-4: 45.9, ²J(P,C): 14 Hz). P(O)[O(CH₂)₄Cl]₂Cl (δ (³¹P): 4.0; δ (¹³C): C-1: 70.7, C-2: 28.3, C-3: 29.6, C-4: 45.3; ²J(P,C): 9 Hz). P(O)[O(CH₂)₄Cl]₃ (δ (³¹P): -2.2. P[O(CH₂)₄Cl]Cl₂ (δ (³¹P): 177; δ (¹³C): C-1: 70.6, C-2: 28.1 C-3: 29.7, C-4: 44.3). P[O(CH₂)₄Cl]₂Cl (δ (³¹P): 166). P[O(CH₂)₄Br]Br₂ (δ (³¹P): 200; δ (¹³C): C-1: 73.4, C-2: 29.4, C-3: 29.9, C-4: 33.9). P[O(CH₂)₄Br]₂Br (δ (³¹P): 183). P{P(O)[O(CH₂)₄Br]₂} (δ (³¹P): 22.9(d), -87.8(q), J(P,P): 164 Hz).

Acknowledgements

Thanks are due to the Fonds zur Förderung der Wissenschaft, Vienna, for making available the NMR spectrometer.

References

- 1 U.S.S.R. Patent 459471 (1975) to Yu. N. Afanas'ev, V. V. Kormachev, I. A. Abramov, E. L. Gefter and V. A. Kikhtin.
- 2 B. Muth, G. Ocskay, L. Knapp, B. Bartha, G. Biro and T. Schleicher, *Hung. Teljes* 5420 (1972).
- 3 Z. Kubica, E. Stich, H. Szewczyk and K. Rudnicki, *Polimery*, 24, 321 (1979).
- 4 N. Watanabe, S. Uemura and M. Okano, Bull. Chem. Soc. Jpn., 48, 3205 (1975).
- 5 P. Dreyfuss and M. P. Dreyfuss, Adv. Polymer. Sci., 4, 428 (1967).
- 6 F. Yamada, I. Horji, T. Yasui and I. Shinohara, J. Macromol. Sci., A14, 635 (1980).
- 7 R. de Jaeger, T. Abouchaccra, A. Ouassini and J. Heubel, Z. Allg. Anorg. Chem., 489, 204 (1982).
- 8 T. Abou Chakra, R. de Jaeger and J. Heubel, Z. Allg. Anorg. Chem., 501, 191 (1983).
- 9 N. I. Shuikin, I. F. Bel'skii and I. E. Grushko, *Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk*, 557 (1963); U.S.S.R. Patent 168 293 (1965) to N. I. Shuikin, I. F. Belskii and I. E. Grushko.
- 10 N. P. Volynskii, Izv. Akad. Nauk SSSR, Ser. Khim. 2528 (1979).
- 11 D. Weber and E. Fluck, Z. Naturforsch., Teil B, 30, 60 (1975).
- 12 H. S. Aaron and L. L. Szafranec, *Phosphorus*, 6, 77 (1976).
- 13 A. Yamasaki and E. Fluck, Z. Anorg. Allg. Chem., 396, 297 (1973).