Intramolecular Coordination involving Tripodal Example Contract Coordination involving **impou**ding 'N₂C⁻' Ligands, including Structural Analysis of Com-**(1 -pyrazolyl)propanes to Dimethylplatinum(I1)**

ALLAN J. CANTY, R. THOMAS HONEYMAN

Tas. 7001, Australia

BRIAN W. SKELTON and ALLAN H. WHITE

sity of Western Australia, Nedlands, W.A. 6009, Australia

Received November 16, 1985

 \mathcal{L} 1-pyrazolyl) methane \mathcal{L} M methyl M ris $(1$ -pyrazolyl) methane j p latinum (11) , $Me₂Pt(HCpz₃)$, undergoes a cyclometallation reaction in warm pyridine to form MePt($HCpz_2(pzH_{-1})$)- (pv) involving presence of the ligand as a bidentate 'NC"' donor, characterized by spectroscopic $[1, 2]$. and X-ray structural analysis $[2]$. As this represents a new binding mode of tris(1-pyrazolyl)methane we have sought derivatives involving the metallated ligand as a tridentate 'N₂C"' organometallic analogue of 'N₃' tris(1-pyrazolyl)methane and 'N₃⁻' tris(1pyrazolyl)borate, e.g. as in $[Me₃Pt(HCpz₃)] [PF₆]$ [3] and MePt(HBpz₃)($CF_3C_2CF_3$) [4], and as a tripodal analogue of planar intramolecular ' N_2C ' coordination systems, e.g. as in $Cl_3Pt[C_6H_3(CH_2-NMe_2)_2\text{-}o,o']$ [5].

we report here the synthesis of organoplatinum (IV) cations involving metallated tris(1-pyrazolyl)-
methane, $[Me₂Pt(HCpz₂(pzH₋₁))(L)]⁺$ (L = py, $[Me₂Pt(HCpz₂(pzH₋₁))(L)]$ ^T $PPh₃$), and related complexes with intramolecular coordination by pyrazole groups, prior to investigation of their reactivity and further development of the organometallic chemistry of these ligands.

 $\sum_{i=1}^{n}$ $\frac{1}{2}$ ratifically defivatives of inclanated the Pt(IV) derivapyrazolyl) methane were oxidized to $Pt(IV)$ derivatives via oxidative addition of iodomethane, since $\frac{d}{dx}$ and $\frac{d}{dx}$ and $\frac{d}{dx}$ complements, since $\frac{100}{2}$ oxidized in this manner, e.g. $Me₂Pt(2,2'-bipyridyl)$ $[6-9]$, and characteristic octahedral geometry for Pt(IV) is expected to ensure 'N₂C⁻⁻' coordination. Thus, MePt(HCpz₂(pzH₋₁))(py) reacts with a 4-5 fold excess of iodomethane in acetone under nitrogen at ambient temperature in darkness $(12 h)$ to form a pale yellow solution, from which, after removal of excess iodomethane and some acetone followed by addition of petroleum-ether, colourless crystals were isolated. The complex has infrared and ¹H NMR spectra (in CDCl₃ at 300 MHz) consistent with the formulation* $[Me₂Pt(HCpz₂(pzH₋₁))(py)]$ I. 0.5Me₂CO, e.g. ν (C=O) for solvate at 1704 cm⁻¹, appropriate relative intensities in NMR spectra, a single $Me₂Pt(IV)$ resonance at 1.51 ppm from $Me₄Si$ with $^{2}J(^{1}H-^{195}Pt)$ 69.2 Hz, a single methine resovitil $J(T - T) 09.2$ Hz, a single includic resofor the pyridical procedure, $\frac{1}{2}$ similar procedure, but the procedure, but the procedure, but the procedure of th for the pyridine group. A similar procedure, but with prior addition of a molar equivalent of triphenylphosphine, $g_{\text{max}} = \frac{N}{N} \sum_{i=1}^{N} \frac{N}{N} \sum_{i=1}^{N} \frac{N}{N}$ mospinie, gave $[\text{mc}_2]$ rum, p mc_2 PHICH CAHORICU A SHIHAI IMPLY SPECTRUM, C.g. 0 [MC₂] (11 V) (1.45 W) $(11 - 1)$ $(0.0 \text{ Hz}$ and $(11 - 1)$ ^{31}P) 7.0 Hz. The PPh₃ complex is sufficiently soluble for measurement of conductance in acetone, giving a molar conductance of 100 ohm⁻¹ cm² mol⁻¹, appropriate [10] for a 1:1 electrolyte.

As the complexes did not give crystals suitable for X-ray structural analysis, related pyrazole donor $\sum_{i=1}^{n}$ structural analysis, related pyrazole donor $\frac{1}{100}$ complexes involving $\frac{1}{2}$ coordination were sought via oxidative addition reactions of a $Pt(II)$ substrate with haloalkane reagents containing two pyrazole groups. The new reagents 1-chloro-2,2-bis-
(1-pyrazolyl)propane (ClCH₂ Cpz₂ CH₃) and 1,3-dichloro-2,2-bis(1-pyrazolyl)propane $[(ClCH₂)₂Crz₂]$ were obtained in high yield by condensation reactions as shown, using anhydrous cobalt(II) chloride as catalyst in the manner described [11] for related bis(1-
pyrazolyl)alkanes.

$$
pz_2C=O + (CICH_2)(XCH_2)C=O \longrightarrow
$$

CICH₂Cpz₂CH₂X + CO₂

(X = H, Cl)

 T complex T as a sub-complex \overline{M} was chosen as a sub-chosen as a sub-chosen as a sub-chosen as a sub-chosen as a sub-The complex $\left[\text{Me}_2\text{Fe}_2\text{O}_1\right]_2$ was chosen as a substrate because the diethylsulfide ligands are readily displaced by nitrogen donors and the complex under-
goes facile oxidative addition reactions [6]. If nitro-

^{*}All complexes have satisfactory microanalyses (C, H, N, P, A_H co

Complex	$X = H$	$X = C1$	
Formula	$C_{11}H_{17}CIN_4Pt$	$C_{11}H_{16}Cl_2N_4Pt$	
M	435.8	470.3	
Space group	$P2_12_12_1$	$P2_1/c$	
a(A)	14.206(8)	8,407(2)	
b(A)	10.888(6)	13.836(6)	
c(A)	8.959(5)	113.139(4)	
β (deg)		110.16(2)	
$V(A^3)$	1386(1)	1434.6(8)	
D_{calc} (g cm ⁻³)	2.09	2.17	
Z	4	4	
F(000)	824	888	
$\mu_{\rm Mo}$ (cm ⁻¹)	99	97	
Crystal dimensions (mm)	$0.18 \times 0.16 \times 0.48$	$0.15 \times 0.40 \times 0.10$	
$A_{\text{min,max}}^*$	4.0, 6.3	2.3, 3.4	
$2\theta_{\text{max}}$ (deg)	60	60	
Number of unique data	2248	4213	
Number of data with $I > 3\sigma(I)$	1818	2912	
R	0.032	0.032	
$R^{\,\prime}$	0.029	0.033	
	(preferred chirality)		

TABLE I. Crystal Data for Complexes $Me₂(Cl)Pt(CH₂Cpz₂CH₂X)$

 $\frac{1}{\sqrt{2}}$ μ and complexes such as Me_2F u(CICH₂CPZ₂) $CH₂X$)' form, subsequent oxidative addition is expected in view of the proximity of chlorine atom(s) and platinum. α beating α . The contraction of close α

On nearing $\left[\text{Me}_2\text{FU}\left(\text{SE1}_2\right)\right]_2$ with $\text{CICn}_2\text{CpZ}_2$. $CH₂X$ in benzene under nitrogen for 15 min a colourless crystalline precipitate formed, and was collected from the hot solution by filtration, washed with benzene and diethyl ether, and recrystallized by exposure of an acetone solution to diethyl ether vapour in a closed container. The complexes were
characterized as $Me_2(CI)Pt(CH_2Cp_2, CH_2X)$ by as $Me_2(Cl)Pt(CH_2Cpz_2CH_2X)$ by microanalysis, osmometric molecular weight determinations in chloroform at 37 °C [found 421 (X = H), 449 (Cl); calc. 435 (H), 470 (Cl)], conductance measurements (non-electrolytes in acetone), NMR
spectra and X-ray structural analysis. Thus, in addi-

 $Me₂(Cl)Pt(CH₂Cpz₂CH₂X)$

 $(X = H, C)$

tion to pyrazole resonances, NMR spectra exhibit on to pyrazoie resonances, initial spectra exilibrity Me₂Pt(IV) resonances at δ 1.30 (X = H), 1.33 (X = Cl), with ²J(¹H-¹⁹⁵Pt) 73.7 Hz (H), 73.6 Hz (Cl); Property 13.7 Hz (H), 13.0 Hz (Cl), μ_{12} resonances at 0 2.50 (H), 2.40 (Ci) with $(n - \text{F1})$ 31.4 Hz (H), 34.5 Hz (Cl), and CH₂ resonances at δ 2.45 (H), 4.65 (Cl) with $J(^1H-^{195}Pt)$
5.8 Hz (H) and 2.9 Hz (Cl).

 $\frac{1}{2}$ (H) and 2.9 Hz (Ci). $\frac{1}{2}$ single crystal λ -ray diffraction studies were undertaken for both complexes using a Syntex $P\overline{1}$ four-circle diffractometer in conventional $2\theta/\theta$ scan mode with Mo K α radiation (Table I)*. Full matrix least-squares refinements, after analytical absorption corrections, involved anisotropic thermal parameters for the non-hydrogen atoms with hydrogen atoms included with calculated (x, y, z, U_{iso}) and constrained, with reflection weights $w = 1/\sigma^2(F)$ and $\sigma^2(I) = \sigma_{\text{diff}}^2(I) + 0.00012\sigma_{\text{diff}}^4(I)$. Neutral complex scattering factors were used $[12]$; computation used the XTAL 83 program system [13] implemented by Dr S. R. Hall on a Perkin-Elmer 3240 computer. Details of the coordination geometry for platinum are given in Table II, and the structure of Me_2 (Cl)Pt(CH₂Cpz₂CH₃) is illustrated in Fig. 1.

The complexes have very similar structures, based on distorted octahedral geometry for $Pf(IV)$. with the ' N_2 C'' ligands confirmed as tripodal (*facial*) tridentates. The main distortion from regular octahedral geometry results from the small bite angles of the tridentate, with $C(1) - Pt - N$ and $N - Pt - N$ angles 78.5(2)-82.5(4)°. The chlorine atom is

 $\frac{F_{\rm eff}}{F_{\rm eff}}$ is available, see Supplementary is availab Material.

Atoms	$X = H$	$X = C1$	Atoms	$X = H$	$X = C1$
Distances					
$Pt-C(1)$	2.06(1)	2.030(6)	$Pt-CI$	2,421(3)	2,443(2)
$Pt-C(A)$	2.05(1)	2.043(7)	$Pt-N(a1)$	2.129(8)	2.166(4)
$Pt-C(B)$	2.00(1)	2.035(9)	$Pt-N(1b)$	2.145(7)	2.163(6)
Angles					
$C(A)-Pt-C(B)$	89.2(5)	88.1(3)	$C(B)-Pt-C1$	91.3(3)	90.8(2)
$C(1)-Pt-C(A)$	93,8(5)	94.3(3)	$N(a1) - Pt - N(b1)$	82.5(4)	81.4(2)
$C(1) - Pt - C(B)$	94.7(4)	93.6(3)	$N(a1) - Pt - Cl$	94.5(3)	96.6(1)
$C(1) - Pt - N(a1)$	78.7(4)	78.5(2)	$N(b1) - Pt - Cl$	95.9(2)	96.4(1)
$C(1) - Pt - N(b1)$	77.9(3)	79.1(2)	$C(1)-Pt-C1$	171.2(3)	173.6(2)
$C(A)-Pt-N(b1)$	93.6(4)	93,7(3)	$C(A)-Pt-N(a1)$	172.1(4)	171.9(2)
$C(A)-Pt-C1$	92,8(4)	90.4(2)	$C(B)-Pt-N(b1)$	172.1(4)	172.5(2)
$C(B)-Pt-N(a1)$	93.8(5)	95.9(2)			
$Pt - C(1) - C(2)$	101,4(6)	102,2(4)	$Pt - N(a1) - C(a5)$	143.4(8)	143.4(4)
$Pt - N(a1) - N(a2)$	108.8(6)	108.8(9)	$Pt - N(b1) - C(b5)$	144.3(7)	144.6(5)
$Pt-N(b1)-N(b2)$	109.1(5)	109.5(4)			

TABLE II. Bond Distances (A) and Angles ($^{\circ}$) for Platinum in Me₂(Cl)Pt(CH₂Cpz₂CH₂X)

g. 1. Projection of Me $_2$ (Cl)Pt(CH $_2$ Cpz $_2$ CH $_3$) with selected atom numbering; 20% thermal ellipsoids are shown for the non-hydrogen atoms, and hydrogen atoms have been given an arbitrary radius of 0.1 A.

frans to the CH2 group, and the three carbon atoms *arts* to the CH₂ group, and the are in a *facial* ' C_3Pt ' orientation.

Although metallated tris(1-pyrazolyl)methane acts as a tripodal, ' N_2C ' ligand with Pt(IV), the new chloro-bis(1-pyrazolyl)propane reagents may be of more general interest as sources of tripodal ' N_2C " coordination because they are readily synthesized and the presence of halogen should allow the synthesis of derivatives for a wider range of metal species, $[1, \text{K}_2$ Sn(IV) [14], Pd(II) and Pt(II) [15], Pt(IV) $\sum_{n=1}^{\infty}$ and $\sum_{n=1}^{\infty}$ [10] recently studied w

Supplementary Material

The atomic coordinates, ligand geometries, least I he atomic coordinates, ligand geometries, least squares planes for pyrazole rings, thermal parameters, and diagrams of both structures are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Labora- λ ny, Lensineld Rd., Cambridge CB2 TEW, U.K. ny request snould be accomp

Acknowledgements

This work was supported by the University of This work was supported by the University of Tasmania and the Australian Research Grants
Scheme.

References

J. Canty and δ , C₁₄ (1982).

A. J. Canty and N. J. Minchin, *J. Organomet.* Chem.,

- *J. Canty, N. J. Minchin, J. M. Patrick and* J. Chem. Soc., Dalton Trans., 1253 (1983).
- 3 H. C. Clark, G. Ferguson, V. K. Jain and M. Parvez, J. Organomet. Chem., 270, 365 (1984).
- 4 B. W. Davies and N. C. Payne, *Inorg. Chem.*, 13, 1843 (1974). $\Theta(74)$.
- Terheijden, G. van Koten, J. L. de Booys, H. J. C. Ubbels and C. H. Stam, Organometallics, 2, 1882 (1983).
- *Transition Met. Chem., I, 199 (1976).*

- 8 J. Kuyper, *Inorg.* Chem., 16, 2171 (1977). J. Kuyper, *Inorg. Chem.*, *10, 21/1* (19/*/)*.
- Trans., 1466 (1977). 8 J. K. Jawad and R. J. Puddephatt, J. Chem. Soc., Dalton $Fans., 1400 (1977).$
- 10 p. *Perguson, P. K. Monagnan, M. Parve.* natt, *Organometatiics*, 4, 1009 (1903).
- $\frac{1}{2}$ **J.** Geary, *Coord. Chem. Rev., 7, 81 (1971).*
- 12448 (1973). **244 1974 1985**
- \mathbf{A} , foers and \mathbf{W} , C. Hamilton (eds.), international ables for A-ray Cryst
- 13 J. M. Stewart and S. R. Hall (eds.), 'The XTAL System', UIIIVEISILY OI MALYIAIIU, 1909. T_{M} , Stewart and S. R. Half (eds.), The ATAL System, Technical Report TR-1364, Computer Science Centre, University of Maryland, 1983.
- *15* D. M. Grove, G. van Koten, J. N. Louwen, J. G. Noltes, Spek and J. C. Schoone, *J. Organomet. Chem., 148, 233* $\frac{1}{2}$
- $1600 \times (1902)$, etc. van Groot and R. Zoet *n. M. Stove, G. vall Notell, J. N. Louwell, J. G. Nottes,* A. L. Spek and H. J. C. Ubbels, *J. Am. Chem. Soc.*, 104, 6609 (1982).
- *Organometallics, 3, 1003* (1984).