Photochemical Catalytic Reduction of Carbon Dioxide by Visible Light Using $Ru^{11}(bipy)_3$ and Re-(CO)₃(bipy)Cl as Photocatalysts

HANNU HUKKANEN and TUULA T. PAKKANEN

University of Joensuu, Department of Chemistry, P.O. Box 111, SF-80101 Joensuu 10, Finland

Received November 19, 1985

There are few studies concerning homogeneous photochemical reduction of carbon dioxide and usually the systems have been rather inefficient [1-7]. The best results developed so far have been reported by Lehn *et al.*, who used Ru^{II}(bipy)₃ as a photosensitizer and Co(II)-ions or complexes as catalysts to produce synthesis gas [8, 9]. They also reported the use of the Ru^{II}(bipy)₃ photosensitizer as a photocatalyst producing formate, [12] and Re(CO)₃(bipy)Cl as a sensitizer and a catalyst producing carbon monoxide [9-11] which was the most effective system. We report here an improvement to this last system using Ru^{II}(bipy)₃ as a cocatalyst.

It has been claimed that use of several photosensitizers enhances the spectral domain of the visible-light-induced reactions and the yields of the products [13]. It has also been noted that Ru^{II} -(bipy)₃ as a photosensitizer and $Re(CO)_3$ (bipy)Cl as a sensitizer-catalyst have the same kind of electrochemical and photochemical properties [10, 11]. We examined these two photocatalysts during carbon dioxide reduction by holding the concentration of one component constant while changing the other in TEOA:DMF solution (1:5) with a constant carbon dioxide amount*.

If the amount of $Ru^{II}(bipy)_3$ is held constant and the concentration of $Re(CO)_3(bipy)Cl$ is varied, we

The light source was a 250 W slide-projector equipped with a 400 nm cut-off filter and a focusing lens. After irradiation the gaseous products (H₂, CO₂ and CO) were analysed by a gas chromatograph.

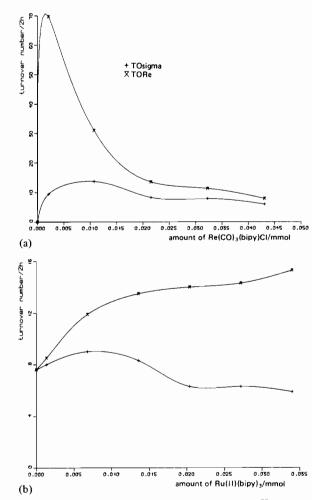


Fig. 1. Reduction of CO₂ by visible light in the Ru^{II}(bipy)₃/ Re^I(CO)₃(bipy)/TEOA/NEt₄Cl system. Catalytic turnover numbers as a function of: (a) the amount of Re^I(CO)₃-(bipy) when the Ru^{II}(bipy)₃ concentration held constant (0.0136 mmol), and (b) as a function of the amount of Ru^{II}-(bipy)₃ when the Re^I(CO)₃(bipy) concentration held constant (0.02155 mmol). (The catalytic turnover numbers TOsigma and TORe, obtained by dividing mol of CO produced in 2 h by mol of the Ru and Re complexes and by mol of the Re complex, respectively).

found that the activity of the Re catalyst was highest at a low concentration of $\text{Re}(\text{CO})_3(\text{bipy})\text{Cl}$ and the maximum total activity was achieved with the 1:1 mole ratio (Fig. 1a). Compared to the system developed by Lehn *et al.* [9], this system produced 50% more carbon monoxide in a short-term photolysis. By holding the $\text{Re}(\text{CO})_3(\text{bipy})\text{Cl}$ concentration constant and changing the amount of $\text{Ru}^{II}(\text{bipy})_3$ in solution, the activity of the Re catalyst was observed to increase quickly as a function of the Ru^{II} -(bipy)₃ concentration. A maximum in the total activity was detected with an $\text{Ru}^{II}(\text{bipy})_3$ concentra-

© Elsevier Sequoia/Printed in Switzerland

 $[*]Ru(bipy)_3Cl_2*5H_2O$ and $Re(CO)_3(bipy)Cl$ were synthesised according to the literature methods [15, 16]. Carbon dioxide was high purity grade (99.95%). Triethanolamine, NEt₄Cl and dimethylformamide were pro-analysis grade. All these materials were stored in air and used without further purification.

Irradiation experiments were performed on a 30 ml solution contained in a round bottom flask equipped with a Teflon stopcock (115 ml capacity) and stirred magnetically at 500-1000 rpm. The reactor was evacuated before the experiment using a pump-freeze-thaw cycle. The coolant was liquid nitrogen and the evacuation was performed for about 2 min. After evacuation a measured amount of carbon dioxide was added into the reactor.

tion of 0.01 mmol. If the concentration of Ru^{II} -(bipy)₃ was further increased, the activity of the Re catalyst remained almost unchanged and the total activity was diminished (Fig. 1b).

Two experiments were done using direct diffuse sunlight as a light source. The amount of carbon monoxide produced was higher than that produced with a 250 W halogen lamp equipped with UVfilter. These higher yields are caused by a larger spectral domain and a more intense radiation compared to the halogen lamp. After 18 h irradiation of $Ru^{II}(bipy)_3$ in the presence of the NEt₄Cl electrolyte, hardly any carbon monoxide was generated. UV-Vis spectroscopy indicated that $Ru^{II}(bipy)_3$ had been reduced to $Ru^{I}(bipy)_3$.

Some NMR experiments were performed to determine the decomposition products of triethanolamine and possible formate production from carbon dioxide. Using long term photolysis and an NMRtube as a reaction vessel, it was found that TEOA decomposes to diethanolamine and glycolaldehyde. In quantitative ¹³C NMR measurements, the concentrations of glycolaldehyde and diethanolamine were found to be at a maximum 7% of the amount of TEOA, using normal catalyst amounts and low solvent volume (1/10 of the normal reaction volume). No formate was found in the present measurements. Its detection would probably have demanded the use of ¹³C enriched carbon dioxide.

The results above suggest the following reaction mechanism involving the known generation of reduced photocatalysts [10, 11]:

$$\operatorname{Ru}^{\mathrm{II}}(\operatorname{bipy})_3 + h\nu \rightleftharpoons ^*\operatorname{Ru}^{\mathrm{II}}(\operatorname{bipy})_3$$
 (1)

*
$$\operatorname{Ru^{II}(bipy)_{3}}$$
 + TEOA \rightleftharpoons $\operatorname{Ru^{I}(bipy)_{3}}$ + TEOA⁺ (2)

$$TEOA^{+} \rightleftharpoons decomposition \ products \tag{3}$$

$$\operatorname{Re}^{I}(\operatorname{CO})_{3}(\operatorname{bipy})\operatorname{Cl} + h\nu \rightleftharpoons \operatorname{Re}^{I}(\operatorname{CO})_{3}(\operatorname{bipy})\operatorname{Cl}$$
(4)

* $\operatorname{Re}^{I}(\operatorname{CO})_{3}(\operatorname{bipy})Cl + \operatorname{TEOA} \rightleftharpoons$ $\operatorname{Re}^{0}(\operatorname{CO})_{3}(\operatorname{bipy})Cl + \operatorname{TEOA}^{+}$ (5)

TABLE I. Carbon Dioxide Reduction with Ru^{II}(bipy)₃ and Re(CO)₃(bipy) in a TEOA:DMF Solution using NEt₄Cl as an Electrolyte. Amounts of Catalysts and Results

Experiment	Ru(bipy) ₃ Cl ₂ •5H ₂ O (mmol)	Re(CO) ₃ (bipy)Cl (mmol)	CO (ml)	TOsigma	Photolysis time (h)	CO ₂ obs. (mmol)	H2 (ml)
1	0.00136	0.02155	4.50	8	2	1.0	
2	0.0068	0.02155	6.29	9	2	0.9	
3	0.0136	0.02155	7.12	8	2	0.9	
4	0.0204	0.02155	7.39	6		0.9	
5	0.0272	0.02155	7.54	6	2 2 2	0.9	
6	0.0340	0.02155	8.08	6	2	0.9	
7	0.0136	0.00215	3.67	10	2	1.0	
8	0.0136	0.01075	8.16	14	2 2	0.9	
9	0.0136	0.0323	8.93	8	2	0.9	
10	0.0136	0.0431	8.35	6	2	0.9	
11	_	0.02155	4.03	7	2 2	0.9	
12	0.0136	0.02155	2.18	3	2	1.0 ^a	
12			3.49	4	4	0.9	0.20
13	0.0136	0.02155	0.17	0.2	2	0.8 ^b	
13			0.40	0.5	4	0.7	
14	0.0136	0.02155	_	_	2	0.8°	
14					15.5	0.11	
15	0.0136	0.01075	_	0.3	2	_	0.17
15			_	0.4	5	_	0.24
156*			0.27	1.0	13	1.0	0.35
15b			0.27	1.0	22	1.0	0.36
16	0.0136	0.01075	5.55	9	2	0.9	0.06
16			7.56	17	18	0.7	2.63
17	0.0136	0.02155	8.35	10	1.9	0.7 ^d	0.04
18	0.0136	0.02155	13.66	18	3	0.7 d	1.37
19	0.0136		0.04	4	2	1.0	1.41
19			0.07	6	18	1.0	1.89

The amount of the electrolyte NEt₄Cl was 100 mg/0.796 mmol. *Without electrolyte. Loaded CO₂ amount 2.785 mmol. ^{a5} ml H₂O/25 ml TEOA:DMF 1:5. ^b10 ml H₂O/20 ml TEOA:DMF 1:5. ^{c30} ml TEOA:DMF 1:5. ^dDirect diffuse sunlight, no UV-filter. TOsigma = mol products/mol catalysts (sensitizers). Experiment 15: no CO₂; 15b: CO₂ added.

Inorganica Chimica Acta Letters

It has been shown that the $\text{Re}^{0}(\text{CO})_{3}(\text{bipy})\text{Cl}$ catalyst reduces carbon dioxide to monoxide [10, 11]. According to these observations, the better efficiency in our system is most probably due to the reaction:

$$Ru^{I}(bipy)_{3} + Re^{I}(CO)_{3}(bipy)Cl \Longrightarrow$$
$$Re^{0}(CO)_{3}(bipy)Cl + Ru^{II}(bipy)_{3} \qquad (6)$$

In principle $\operatorname{Ru}^{II}(\operatorname{bipy})_3$ could be reduced to $\operatorname{Ru}^{I}(\operatorname{bipy})_3$ by the $\operatorname{Re}^{0}(\operatorname{CO})_3(\operatorname{bipy})\operatorname{Cl}$ photocatalyst, but according to our results this reaction does not occur, as it would lead to a diminished reduction of carbon dioxide. This has been confirmed by UV-Vis spectroscopy. After photolysis, only the absorption maxima of $\operatorname{Ru}^{II}(\operatorname{bipy})_3$ were found.

The present photochemical carbon dioxide reduction system is unstable. The generation of carbon monoxide ceases after 5-7 h photolysis and the system begins to produce hydrogen. The amount of hydrogen is rather low. After 18 h photolysis the maximum amount of hydrogen was 2.63 ml. It has been postulated that the reason for the deactivation of the Re catalyst is that a formate complex is generated [11, 14]. This may be the main reason for the instability of the present system.

When water was added to this system a dramatic drop in the rate of generation of carbon monoxide was noted. When the amount of water reached 33 vol% the reaction ceased. The explanations for this behaviour may be the poor solubility of $Re(CO)_3$ -(bipy)Cl in water and the change in solvent properties.

This system also demands the presence of an electrolyte to stabilize the chloride anion of Re- $(CO)_3$ (bipy)Cl. NEt₄Cl was used for this purpose. The reaction rate is diminished if no electrolyte is present in the solution. A similar phenomenon has been noted earlier [9].

The described system achieves efficient carbon dioxide reduction in short-time photolysis. It is the most effective system known currently, but its stability is poor for long-time usage.

Acknowledgement

We thank the NESTE Ltd Foundation for financial support.

References

- 1 N. Getoff, Z. Naturforsch., Teil B, 17, 87 (1962).
- 2 N. Getoff, Z. Naturforsch., Teil B, 18, 169 (1963).
- 3 B. Åkermark, in S. Claesson and L. Engström (eds.), 'Solar Energy – Photochemical Conversion and Storage', National Swedish Board for Energy Source Development, NE 1977:6, Stockholm, 1977, Chap. 6.
- 4 B. Akermark, U. Eklund-Westlin, P. Bäckström and R. Löf, Acta Chem. Scand., Ser. B, 34, 27 (1980).
- 5 S. Tazuke and N. Kitamura, *Nature (London), 275*, 301 (1978).
- 6 N. Kitamura and S. Tazuke, Chem. Lett., 1109 (1983).
- 7 A. H. A. Tinnemans, T. P. M. Koster, D. H. M. W. Thewissen and A. Mackor, *Recl. Trav. Chim. Pays-Bas*, 103, 288 (1984).
- 8 J. M. Lehn and R. Ziessel, Proc. Nat. Acad. Sci. U.S.A., 79, 701 (1982).
- 9 J. Hawecker, J. M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Commun., 536 (1983).
- 10 R. Ziessel, Nouv. J. Chim., 7, 613 (1983).
- 11 J. M. Lehn, in *Proc. 8th Int. Cong. Catalysis*, Vol. 1, Berlin (West), July 2-6, 1984, p. 73.
- 12 J. Hawecker, J. M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Commun., 56 (1985).
- 13 J. R. Bolton, Science, 202, 705 (1978).
- 14 B. P. Sullivan and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1244 (1984).
- 15 J. N. Braddock and T. J. Meyer, J. Am. Chem. Soc., 95, 3158 (1973).
- 16 J. C. Luong, L. Nadjo and M. S. Wrighton, J. Am. Chem. Soc., 100, 5790 (1978).