The Preparation and Properties of the Germyltrihydroaluminate Ion

DALE C. WINGLETH and ARLAN D. NORMAN*

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Cola. 80309, U.S.A. Received October 28. 1985

Abstract

Germane (GeH₄) and LiAlH₄ in etheral solvents react, liberating H_2 and forming LiGeH₃AlH₃. Reaction of $KGeH_3$ with AlH₃ yields $KGeH_3$ AlH₃ along with other less well-defined products. The $GeH₃$ -AlH₃⁻ ion is marginally stable in solution at 25 °C, and decomposes rapidly upon solvent removal. The $GeH₃AlH₃$ ion-containing solutions are characterized by IR and 'H NMR spectral data and analysis of H_2O , HCl and DCl cleavage products. The GeH₃- AH_3 ⁻ ion functions poorly as a germylating agent; with $CH₃I$ or Me₃SiBr, low vields of $CH₃GeH₃$ or $Me₃SiGeH₃$, respectively arise. The relative importance of $\text{GeH}_3\text{AlH}_3^-$ ion secondary reactions which involve the GeH₃AlH₃⁻ ion alone, or it with GeH₄ or the AlH_4^- ion, are discussed.

Introduction

Isolatable compounds which contain germaniumaluminum bonds are rare $[1, 2]$ although such species as intermediates in alkylalane-halogermane $[3, 4]$ and germylarsine-LiAlH₄ reactions have been suggested $[5]$. The known stable compounds $K(Ph_3 -$ GeAlH₃) [1] and (Me₃Ge)₃Al THF [2], contain complete organo-group substitution at germanium. No examples of germanium hydride derivatives analogous to $K(GeH_3BH_3)$ [6] have been reported. In view of this, our interest in new germyl-group $(GeH₃)$ transfer agents, and the desire to find novel GeAl solid materials precursors, we have studied reactions which occur between GeH₄ and the AlH₄⁻ ion and between $KGeH₃$ and $AHH₃$. The results are described below.

Experimental

Apparatus and Materials

Air-sensitive materials were handled in standard vacuum line or N_2 -flushed glove bag apparatus [7]. Non-condensible gases were collected and measured

using a calibrated Toepler pump. 'H NMR spectra were obtained at 60.0 and 100.0 MHz with Varian A-60A and HA-100 spectrometers, respectively. Chemical shifts were measured relative to internal $Me₄Si$; + δ shifts are downfield from the standard. Infrared spectra were obtained using a Beckman IR-20 spectrometer. Gaseous samples were analyzed in 10 cm cells equipped with KBr windows. Mass spectra (70 eV) were collected with a Varian MAT CH5 spectrometer.

Germane (GeH,) was prepared and purified by standard techniques $[8]$. GeH₃D was obtained from $LiAlD₄$ reduction of GeH₃Br; monodeuteration was ascertained from IR and mass spectral data [9]. DCl ($>95\%$ D) was prepared from reaction of SiCl₄ with D_2O [10]. LiAlH₄ (Metal Hydrides, Inc.) was recrystallized from $Et₂O$. AlCl₃ (Matheson, Coleman, and Bell) was sublimed immediately before use. Mea-SiBr (K and K Laboratories) and $CH₃I$ (Matheson, Coleman, and Bell) were distilled. Monoglyme, diglyme, and tetrahydrofuran were triply-distilled from LiAlH₄ and stored under N_2 .

Synthesis of LiGeH, AIH, Solutions

(a) GeH, with LiAlH,

Germane at *ca.* 2 atm pressure was allowed to react with LiAlH₄ in ether solvents at temperatures between ambient (25-27 °C) and 95 °C in a 500 ml bulb typically under conditions shown in Table I. After reaction, H_2 and excess GeH₄ were removed and measured. Although ambient temperature reactions were extremely slow, requiring months to approach 1:1 $\text{GeH}_4: \text{AlH}_4^-$ reaction ratios, these solutions remained clear and colorless. Optimum reaction temperature was determined to be 95 \degree C. Reactions at 95° C were allowed to proceed until solution discoloration began, the time in which a 1:1 GeH_4-A1H_4 ⁻reactant ratio is approached. Further heating causes deeper discoloration and evolution of additional H_2 .

Attempts to obtain crystalline salt products by controlled removal of solvent at $0^{\circ}C$ or by salting out with CH_2Cl_2 or C_6H_6 resulted instead in immediate evolution of H_2 , GeH₄ .[11], traces of Ge₂H₆ [12], and formation of intractable orange solid.

0 Elsevier Sequoia/Prined in Switzerland

^{*}Author to whom correspondence should be addressed

Experiment	Temperature $(^{\circ}\mathrm{C})$	Reactants (mmol)		H ₂	GeH_4 :	Cleavage
	Solvent ^a Timeb	LiAlH ₄	GeH ₄	evolved	LiAlH ₄ (reacted)	products ^{c,d}
\mathbf{l}	$24 - 27$ digl	5.83	3.40	3.43	0.58	nm^e
$\boldsymbol{2}$	195 d $24 - 27$ digl 165d	2.80	2.46	2.69	0.88	GeH ₄ ^f (2.30) $H2$ (7.84) $Ge_2H_6(0.02)$
3	95 digl 3 h	5.98	6.20	nm	1.04	GeH ₄ $(2.68)^{g}$ GeH ₃ Cl(1.38) $H2$ (18.4) Ge_2H_6 (0.05) Ge ₃ H ₈ (<0.01)
4	95 digl 4.5 h	5.15	5.35	6.11	1.04	GeH ₄ (4.22) $H2$ (13.7) $Ge_2H_6(0.26)$
5	95 monogl 5 h	6.01	4.55	5.12	0.76	nm
	95	5.21	5.21	5.83	1.00	nm
$\begin{array}{c} 6 \\ 7 \end{array}$	95 THF 5.8h	3.70	4.77	5.00	1.30	nm

TABLE I. Reactions of GeH₄ with LiAlH₄

a Abbreviations: digl, diglyme; monogl, monoglyme; THF, tetrahydrofuran. bAbbreviations: d, day; h, hours; min, minutes.
^e Millimole quantities in parentheses. dCleavage with H₂O. unless otherwise specified. eQuantity $\text{``Millimole quantities in parentheses.}$ ``Clearly, ``Clearly, ``Clearly, $\text{``IqO},$ unless otherwise specified. $\text{``Quantity not measured.}$ characterized by IR spectra: GeH₄, ref. 11; Ge₂H₆, ref. 12; GeH₃Cl, ref. 14; Ge₃H₆, ref. 12. ^gCleavage with HCl.

Fig. 1. $KGeH₃-AlH₃$ reaction apparatus: A, vacuum line attachment sites; B, potassium introduction vessel; C, sealoff constrictions; D, potassium + $GeH₄$ reaction chamber; E, $KGeH₃$ storage vessel; F, break seal; G, AlCl₃ introduction tube; H, AlH₃ formation vessel; I, KGeH₃ + AlH₃ reaction vessel; J, NMR tube; K, medium porosity fritted filters; L, magnetic breaker.

(b) KGeH3 with AIH,

Reactions of $KGeH₃$ with $AlH₃$ in diglyme were carried out in the apparatus shown in Fig. 1. KGeH₃

[6] (0.80 mmol) was prepared at D from potassium (sublimed into D from B) and excess $GeH₄$ in diglyme (3 ml). The $KGeH₃$ was filtered through the frit into receiver E and maintained at -196 °C until needed for reaction with the $A1H_3$ solution. The $AlH₃$ [13] was prepared in the inverted apparatus at H. $AICI₃$ (0.38 mmol) from G was added to LiAlH₄ (0.80 mmol) in diglyme at 25 °C in H. After reaction, the apparatus was inverted to allow filtration of the reaction solution into I. The KGeH₃ solution was then added from E to the $AH₃$ solution in I at -196 °C and the mixture was warmed to -63 °C for 10 h during which time reaction occurred. Traces of H_2 formed. Samples for NMR spectra were removed directly in NMR tubes at J.

Characterization Studies

(a) Hydrolyses

Excess H₂O was condensed at -196 °C into the $GeH_4-LiAlH_4$ or $KGeH_3-AlH_3$ reaction solution. The mixtures were warmed to 25 \degree C for 15 min, after which time H_2 and volatile hydrolysis products were removed *in vacua.* These were separated by lowtemperature fractional distillation and characterized. No attempt was made to analyze non-volatile residues. Data for LiGeH₃AlH₃ from GeH₄-LiAlH₄ reactions (experiments 2 and 4) are shown in Table I.

A KGeHs-AlHs reaction solution (from 2.20 mmol $KGeH₃$ and 2.20 mmol $AlH₃$) when allowed to react with excess H_2O yielded H_2 , GeH₄ [11] (1.40 mmol) , Ge_2H_6 [12] (0.12 mmol) and traces of higher germanes.

 $LiGeH₃AlH₃$ solutions from $GeH₄ - LiAlH₄$ (prepared as in experiment 4) and $KGeH₃–AIH₃$ reactions were allowed to react briefly, typically 5-10 min at 25 °C, with 1.2 M DCl in D₂O. The monogermane which formed was removed, purified by passage through a -196 °C trap, and subjected to mass spectral analysis (Table II).

TABLE II. Mass Spectral Analysis of Monogermanes^{a, b}

Control samples		Deuterolysis products			
GeH_4	GeH_3D	$LiAlH4 - GeH4$	$KGeH_3 - A1H_3$		
17.8	14.1	17.4	16.2		
11.2	5.7	6.7	6.8		
69.4	44.1	47.9	46.5		
64.1	44.7	45.8	46.5		
94.1	90.0	91.6	92.9		
91.2	62.4	61.2	64.3		
100.0	100.0	100.0	100.0		
78.2	70.7	68.8	72.0		
16.1	67.1	66.6	66.0		
15.4	11.8	16.1	13.6		
< 0.5	12.1	15.7	11.9		
	< 0.5	1.1	< 0.6		
		1.2	0.4		

^aPolyisotopic spectral data; values based on the average of three analyses. bPercent intensities relative to the base peak at *m/e* 76.

(b) Anhydrous HCI cleavage

 $LiGeH₃AlH₃$ in diglyme was allowed to react with excess HCl (experiment 3). After 45 min, volatile reaction materials were removed *in vacua,* separated and characterized.

(c) Spectral data: IR

Infrared spectra of $GeH_4-LiAlH_4$ and $KGeH_3 AlH₃$ reaction solutions were obtained on samples under N_2 pressed between CsCl plates. Spectra of samples from $GeH_4-LiAlH_4$ reactions show absorptions at (diglyme absorptions subtracted from spectrum) 1940(s), 1700(s), 765(s), 710(s), 665(w), 605(m), 405(vw), and 365(vw) cm^{-1} . Samples of $KGeH₃–AIH₃$ reaction solutions were closely similar, but with additional weak absorptions at 1955 and 680 cm^{-1} .

(d) ¹H NMR

Diglyme solutions of LiGeH₃AlH₃, from GeH₄--LiAlH₄ reactions, exhibit a broad singlet at δ 1.87 ppm (GeH3 protons). Broad resonance lines due to

protons on Al could not be unambiguously assigned. The $KGeH_3 - A1H_3$ reaction solutions yielded a resonance at δ 1.87 ppm and a lesser resonance of varying intensity at δ 2.02 ppm.

(e) Reactions with Me,SiBr or CHJ

A diglyme solution of a $GeH_4-LiAlH_4$ reaction mixture prepared from 5.21 mmol GeH₄ and 5.21 mmol LiAlH4 (experiment 6 reaction mixture) was allowed to react with 22.9 mmol of $Me₃SiBr$ for 10 min at 0° C. During this time the reaction mixture turned light-orange. Volatile reaction materials consisted of GeH₄ [11] (1.37 mmol) , Me₃SiH [15] (13.4 mmol), $Me₃SiGeH₃$ [16] (0.09 mmol), $Ge₂$ - H_6 [12] (0.05 mmol), and unreacted Me₃SiBr (9.15 mmol).

Diglyme solutions of GeH_4 -LiAlH₄ reaction mixtures prepared at 95 \degree C were allowed to react with excess $CH₃I$: (i) a reaction solution from 10.8 mmol LiAlH₄ and 9.8 mmol GeH₄, when allowed to react with 16.4 mmol of $CH₃I$ for 10 min at 25 °C, yielded a H_2 -CH₄ mixture (6.14 mmol) along with GeH_4 [11] (0.43 mmol), CH_3GeH_3 [17] (0.17 mmol), and Ge_2H_6 [12] (1.1 mmol); (ii) a solution from 3.70 mmol $GeH₄$ and 2.77 mmol of LiAlH₄, when allowed to react with $CH₃I$ for 60 min at 25 °C, yielded a H_2 -CH₄ mixture (4.64) mmol), GeH₄ [11] (0.42 mmol), CH_3GeH_3 [17] (0.06 mmol), Ge_2H_6 [12] (0.90 mmol), $CH_3Ge_2H_5$ [18] (0.20 mmol), and traces of $CH₃(GeH₂)_nGeH₃$ $[18]$.

Results and Discussion

Lithium tetrahydroaluminate reactions with excess GeH4 in glyme ethers or tetrahydrofuran were studied at temperatures between 25 \degree C and 95 \degree C under conditions given in Table I. Reaction progress was monitored by periodically measuring the evolved H_2 [H₂(evol.)]. Reactions were taken as complete when H_2 evolution slowed or essentially stopped. At completion of reaction the GeH_4 consumed [GeH4(react.)] was determined and the resulting reaction solutions were analyzed. At all temperatures studied, reaction proceeded smoothly to the eventual uptake of one equivalent of GeH_4 , consistent with the reaction

 $GeH_4 + LiAlH_4 \longrightarrow H_2 + LiGeH_3AlH_3$ (1)

At 25 \degree C, reaction is slow and requires months to reach a GeH₄(react.)/LiAlH₄(react.) ratio of one. Reaction proceeds faster at higher temperatures, typically approaching a unit GeH_a (react.)/LiAlH₄-(react.) ratio in several hours. Initially, at 25 \degree C, the GeH_4 (react.)/ H_2 (evol.) ratio is close to unity (experiment 1); however, as reaction approaches one equivalent of GeH₄ consumed, the ratio decreases, typically to ca. $0.85-0.90$ (e.g. experiment 2). The GeH,react.)/Hs(evol.) ratio in 95 $^{\circ}$ C reactions is \leq 1 from the outset (experiment 4) and these reactions are accompanied by distinct solution discoloration near reaction end, suggesting the involvement of Ge-Ge bond forming secondary reactions.

Reaction of $KGeH_3$ with AlH_3 , analogous to that of KGeH₃ with B_2H_6 used to form KGeH₃BH₃ [6], was examined as a possible alternative route to solutions of the GeH₃AlH₃⁻ ion, according to

$$
KGeH3 + AIH3 \longrightarrow KGeH3AlH3
$$
 (2)

Reactions were carried out in the apparatus shown in Fig. 1. This method is very tedious because both $KGeH₃$ [6, 18, 19] and AlH₃ [13, 20] are thermally unstable and must be handled with care during the reaction. Upon mixing the $KGeH₃$ and $AlH₃$ solutions at -63 °C, slight discoloration of the reaction solution and the evolution of traces of $H₂$ occurred.

Characterization of the $GeH_4-LiAlH_4$ and KGeHs-AlHs reaction solutions has been accomplished by a combination of spectral (IR and 'H NMR) and solution protolysis (H_2O , D_2O , and HCl cleavage) data. Infrared spectra of the $GeH_4-LiAlH_4$ and $KGeH₃-AlH₃$ reaction solutions are closely similar; however, the spectrum of the $KGeH₃$ reaction solutions contain several weak and unassigned extra absorptions. The GeH₄-LiAlH₄ solutions exhibit absorptions at 1940 and 1700 cm^{-1} attributable to Ge-H and Al-H absorptions, respectively. The Ge-H absorption is at lower frequency than most other germanes $[11-13, 17]$ but is comparable to that seen in $KGeH_3BH_3$ (1930 cm⁻¹) [6]. The Al-H absorption in LiAlH₄ [21] occurs at 1740 cm^{-1} . The weak absorption at 365 cm^{-1} is tentatively assigned to the Al-Ge bond stretch, although this absorption in other Ge-Al bond-containing compounds $[1, 2]$ has not been reported.

¹H NMR spectra show a singlet resonance at δ 1.87 ppm, attributable to the GeH_3 moiety, and close to that (δ 2.30 ppm) reported for the GeH₃ protons of $KGeH₃BH₃$ [6]. Spectra above 25 °C were not obtained because of the solution's thermal instability. Resonances clearly attributable to Al-H protons were not seen, apparently a situation similar to that found for the $Ph_3GeAlH_3^-$ ion [1]. This most likely results because of 27 Al quadrapolar relaxation effects.

Deuterolysis of $GeH_4-LiAlH_4$ and $KGeH_3-AlH_3$ reaction solutions by their reaction with $DC1/D₂O$ yields germane whose isotopic composition can be compared with that of pure GeH_4 [11] and GeH_3D [9] (Table II). From both sources, the germane obtained is primarily $GeH₃D$, although small amounts $(\leq 10\%)$ of more highly deuterated material (e.g. $GeH₂D₂$ and $GeHD₃$) are present. The germane from the $KGeH₃ - AIH₃$ system contains less $GeHD₃$ than that from the $GeH_4-LiAlH_4$ reaction. From both reactions the major reactive species is clearly the GeH₃ unit. Thus, large quantities of germanium moieties which are bonded to more than one hydridoaluminate species simultaneously $(\rightarrow$ GeH or $(\rightarrow$ GeH₂) are not present.

Additional characterization of solution reaction species and inferences about the nature of secondary reactions are based on analyses of the protolysis $(H₂O$ or HCl cleavage) reactions. Hydrolysis of 25 \rm{C} GeH₄-LiAlH₄ solutions yielded GeH₄ [GeH₄(prot)] and H₂ [H₂(prot)] in agreement with eqn. (3) , consistent with the presence of the GeH₃-

$$
\text{LiGeH}_3\text{AlH}_3 + 4\text{H}_2\text{O} \longrightarrow \text{GeH}_4 + \text{LiAl}(\text{OH})_4 + 3\text{H}_2 \tag{3}
$$

 AH_3^- ion. Hydrolysis of 95 °C solutions (e.g. experiment 4) yielded H_2 , GeH₄, and small quantities of higher germanes, mainly Ge_2H_6 . In all cases, the $GeH_4(react.)/GeH_4(prot.)$ ratio was greater than unity (>1) and the H₂(prot.)/GeH₄(prot.) ratio exceeds 3 (>3) . The total recovered Ge (sum of recovered GeH₄, Ge₂H₆, and higher germanes) amounted to 85-95% of the total Ge [based on GeH₄(react.)] in the system. Reactions with HCl were more complex, yielding both GeH_4 and GeH_3Cl and small amounts of Ge_2H_6 and Ge_3H_8 . Generally in these, only 65-80% of the total Ge was recovered.

Four secondary reactions (eqns. $(4)-(7)$) which might be considered in the $GeH₄$ reaction and which could account for the observed reaction stoichiometry and protolysis products are

 $GeH_4 + GeH_3AIH_3^- \longrightarrow (GeH_3)_2AIH_2^- + H_2$ (4)

GeH₄ + GeH₃AlH₃⁻ \longrightarrow Ge₂H₅AlH₃⁻ + H₂ (5)

 $GeH_3AIH_3^- + AIH_4^- \longrightarrow AlH_3GeH_2AlH_3^{2-} + H_2$ (6)

$$
2\text{GeH}_3\text{AlH}_3^- \longrightarrow \text{AlH}_4^- + \text{Ge}_2\text{H}_5\text{AlH}_3^- \tag{7}
$$

An analysis of the qualitative effect each of these reactions would have on the theoretical $\text{GeH}_4(\text{react.})/$ LiAlH₄(react.), GeH₄(react.)/H₂(evol.), GeH₄(react.)/ GeH₄(prot.), and H_2 (prot.)/GeH₄(prot.) ratios, and the experimentally observed ratios are summarized in Table III. The observed $\text{GeH}_4(\text{react.})/\text{H}_2(\text{evol.})$ ratio is \leq 1. Thus reaction of additional GeH₄ with $GeH₃AIH₃⁻$ (eqn. (4)) to form more highly germylated species such as $(GeH_3)_2AIH_2^-$ as occurs in PH_3- LiAlH₄ [22, 23] and AsH₃-LiAlH₄ [24] reactions, is not a major process.

The observed $\text{GeH}_4(\text{react.})/\text{H}_2(\text{evol.})$ and GeH_4 -(react.)/GeH4(prot.) ratios are always slightly less than $(\leq l)$ and greater than unity $(>l)$, respectively. Participation of reactions $(5)-(7)$ seems likely. Reac-

tion (6) could account for excess H_2 obtained in protolysis reactions and for the GeH_2D_2 among the GeH4-LiAlH4 reaction product deuterolysis products. Reaction (5) and (7) could be the source of species which yield the higher germanes found among the H_2O and HCl protolysis products. Reaction (5) might be expected since Ge_2H_6 and other GeH₃-substituted compounds (e.g. GeH₃C₅H₅ [25]) are known to undergo reaction to more highly catenated products under thermolysis conditions. Decomposition of the $GeH_3BH_3^-$ ion, in a process analogous to that in eqn. (7), has been reported previously [6].

It is interesting to note the difference in thermal stability between the GeH₃AlH₃⁻ and GeH₃BH₃⁻ ions. The latter, as the potassium salt can be crystallized from glyme ethers [6]. The compound melts at $98-99$ °C with little decomposition. In contrast, $LiGeH₃A1H₃$ or $KGeH₃A1H₃$ when freed of solvent *in vucuo* or when 'salted out' by addition of a second solvent, evolves H_2 , GeH₄, and Ge₂H₆ and undergoes immediate color change from colorless to deep orange.

Reactions of LiGeH₃AlH₃ with CH₃I and Me₃-SiBr indicate that $LiGeH₃AlH₃$ has only limited value as a germylating agent. Reaction with CH₃I yielded $4-5\% \text{ CH}_3\text{GeH}_3$, along with larger amounts of GeH₄, $CH_3Ge_2H_5$, Ge_2H_6 and CH₄. Similarly, LiGeH₃AlH₃ with excess Me₃SiBr produces $1-2\%$ yields of Me₃- $SiGeH_3$ along with Me₃SiH, GeH₄, and Ge₂H₆. Methane and Me₃SiH likely arise from hydroaluminate species reduction of $CH₃I$ and Me₃SiBr, respectively. Germane and Ge_2H_6 formation indicates participation of other more complex processes, perhaps involving the germylene $[GeH₂]$ intermediate as has been suggested to be the case for KGeH₃- $BH₃$ [6].

Acknowledgements

Support of this work by National Science Foundation Grants GP-8090 and CHE-83 12856 and a University of Colorado Graduate School Fellowship for D.C.W. is greatfully acknowledged.

References

- N. Duffant, J. Dunogues, B. Colos, B. Birtiàre, J. Setgó 2 L. Roach and W. Erb, *Angew. Chem., Int.* Ed. *Engl.,* and A. Cazes, *J. Organomet. dhem., 149, 57 (1978).*
- 17, 604 (1978).
- 3 F. Glockling and J. R. C. Light, J. Chem. Sot. *A,* 623 (1967).
- 4 F. Glockling, J. R. C. Light and R. G. Stafford,J. *Chem. Sot. A,* 426 (1970).
- 5 J. W. Anderson and J. E. Drake, *J. Chem. Sot., Dalton Trans., 951 (1972).*
- 6 D. S. Rustad and W. L. Jolly, *Inorg.* Chem., 7, 213 (1968).
- I D. F. Shriver, 'The Manipulation of Air-sensitive 8 W. L. Jolly and J. E. Drake, *Inorg. Synth., 7, 36 (1963).* Compounds', McGraw-Hill, New York, 1969.
- 9 L. P. Lindeman and M. K. Wilson, Z. *Phys.* Chem., 9, 29 (1956).
- 10 K. Clusius and G. Wolf, Z. *Naturforsch., Teil A, 2, 495 (1947).*
- 11 J. W. Straley, C. H. Tindal and H. H. Nielson, *Phys. Rev.,* 62, 161 (1942).
- 12 V. A. Crawford, K. H. Rhea and M. K. Wilson, J. *Chem. Phys., 37, 2377 (1962).*
- 13 A. E. Finholt, A. C. Bond, Jr. and H. I. Schlesinger, J. 14 D. E. Freeman, K. H. Rhee and M. K. Wilson, J. *Chem. Am. Chem. Sot., 69, 1199 (1947).*
- 15 D. F. Ball, P. L. Goggin, D. C. McKaen and L. A. Wood-*Phys., 39, 2908 (1963).*
- ward, *Spectrochim. Acta, 16, 1358 (1960).*
- 16 E. Amberger and E. Muhlhofer, J. *Organomet. Chem.,* 12, 55 (1968).
- 17 J. E. Griffiths,J. Chem. *Phys.,* 38, 2879 (1968).

 \bar{z}

- 18 K. M. Mackay, R. D. D. George, P. Robinson and R. Watt, J. *Chem. Sot. A,* 1920 (1968).
- 19 D. S. Rustad and W. L. Jolly, Inorg. Chem., 6, 1986 (0.67) 20 E. C. Ashby, *Adv. Inorg. Chem. Radiochem., 8, 282*
- *(1966). 21* E. R. Lippincott, J. Chem. *Phys.,* 17, 1351 (1949);
-

E. C. Ashby, F. R. Dobbs and H. P. Hopkins, Jr., *J. Am.* Chem. Soc., 95, 2823 (1973).

- 2. μ E. Finholt, C. Helling, V. Imhof, L. Nelson and E. Jacobsen, *Inorg. Chem., 2, 504 (1963).*
- *23* A. D. Norman and D. C. Wingeleth. _ *Inorg. Chem.. 9, 98* (1970).
- 24 J. W. Anderson and J. E. Drake, *J. Chem. Soc. A*, 3131 (1970).
- 25 0. C. Angus and S. R. Stobart, *Chem.* Commun., 127 (1973).