The Preparation and Properties of the Germyltrihydroaluminate Ion

DALE C. WINGLETH and ARLAN D. NORMAN*

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colo. 80309, U.S.A. Received October 28, 1985

Abstract

Germane (GeH₄) and LiAlH₄ in etheral solvents react, liberating H₂ and forming LiGeH₃AlH₃. Reaction of KGeH₃ with AlH₃ yields KGeH₃AlH₃ along with other less well-defined products. The GeH₃-AlH₃⁻ ion is marginally stable in solution at 25 °C, and decomposes rapidly upon solvent removal. The GeH₃AlH₃⁻ ion-containing solutions are characterized by IR and ¹H NMR spectral data and analysis of H₂O, HCl and DCl cleavage products. The GeH₃-AlH₃⁻ ion functions poorly as a germylating agent; with CH₃I or Me₃SiBr, low yields of CH₃GeH₃ or Me₃SiGeH₃, respectively arise. The relative importance of GeH₃AlH₃⁻ ion secondary reactions which involve the GeH₃AlH₃⁻ ion alone, or it with GeH₄ or the AlH₄⁻ ion, are discussed.

Introduction

Isolatable compounds which contain germaniumaluminum bonds are rare [1, 2] although such species as intermediates in alkylalane-halogermane [3, 4] and germylarsine-LiAlH₄ reactions have been suggested [5]. The known stable compounds K(Ph₃-GeAlH₃) [1] and (Me₃Ge)₃Al THF [2], contain complete organo-group substitution at germanium. No examples of germanium hydride derivatives analogous to K(GeH₃BH₃) [6] have been reported. In view of this, our interest in new germyl-group (GeH₃) transfer agents, and the desire to find novel GeAl solid materials precursors, we have studied reactions which occur between GeH₄ and the AlH₄⁻ ion and between KGeH₃ and AlH₃. The results are described below.

Experimental

Apparatus and Materials

Air-sensitive materials were handled in standard vacuum line or N_2 -flushed glove bag apparatus [7]. Non-condensible gases were collected and measured

using a calibrated Toepler pump. ¹H NMR spectra were obtained at 60.0 and 100.0 MHz with Varian A-60A and HA-100 spectrometers, respectively. Chemical shifts were measured relative to internal Me₄Si; $+\delta$ shifts are downfield from the standard. Infrared spectra were obtained using a Beckman IR-20 spectrometer. Gaseous samples were analyzed in 10 cm cells equipped with KBr windows. Mass spectra (70 eV) were collected with a Varian MAT CH5 spectrometer.

Germane (GeH₄) was prepared and purified by standard techniques [8]. GeH₃D was obtained from LiAlD₄ reduction of GeH₃Br; monodeuteration was ascertained from IR and mass spectral data [9]. DCl (>95% D) was prepared from reaction of SiCl₄ with D₂O [10]. LiAlH₄ (Metal Hydrides, Inc.) was recrystallized from Et₂O. AlCl₃ (Matheson, Coleman, and Bell) was sublimed immediately before use. Me₃-SiBr (K and K Laboratories) and CH₃I (Matheson, Coleman, and Bell) were distilled. Monoglyme, diglyme, and tetrahydrofuran were triply-distilled from LiAlH₄ and stored under N₂.

Synthesis of LiGeH₃AlH₃ Solutions

(a) GeH₄ with LiAlH₄

Germane at *ca.* 2 atm pressure was allowed to react with LiAlH₄ in ether solvents at temperatures between ambient $(25-27 \,^{\circ}\text{C})$ and 95 $^{\circ}\text{C}$ in a 500 ml bulb typically under conditions shown in Table I. After reaction, H₂ and excess GeH₄ were removed and measured. Although ambient temperature reactions were extremely slow, requiring months to approach 1:1 GeH₄:AlH₄⁻ reaction ratios, these solutions remained clear and colorless. Optimum reaction temperature was determined to be 95 $^{\circ}\text{C}$. Reactions at 95 $^{\circ}\text{C}$ were allowed to proceed until solution discoloration began, the time in which a 1:1 GeH₄-AlH₄⁻ reactant ratio is approached. Further heating causes deeper discoloration and evolution of additional H₂.

Attempts to obtain crystalline salt products by controlled removal of solvent at 0 °C or by salting out with CH_2Cl_2 or C_6H_6 resulted instead in immediate evolution of H_2 , GeH_4 [11], traces of Ge_2H_6 [12], and formation of intractable orange solid.

© Elsevier Sequoia/Prined in Switzerland

^{*}Author to whom correspondence should be addressed

Experiment	Temperature (°C) Solvent ^a Time ^b	Reactants (mmol)		H ₂	GeH4:	Cleavage
		LiAlH ₄	GeH ₄	evolved	LiAlH ₄ (reacted)	products
1	24-27 digl	5.83	3.40	3.43	0.58	nm ^e
2	195 d 24–27 digl 165 d	2.80	2.46	2.69	0.88	GeH_4^{f} (2.30) H ₂ (7.84) Ge_2H_6 (0.02)
3	95 digl 3 h	5.98	6.20	nm	1.04	$\begin{array}{c} \text{GeH}_4 (2.68)^{\text{g}} \\ \text{GeH}_3 \text{Cl} (1.38) \\ \text{H}_2 (18.4) \\ \text{Ge}_2 \text{H}_6 (0.05) \\ \text{Ge}_3 \text{H}_8 (<\!0.01) \end{array}$
4	95 digl 4.5 h	5.15	5.35	6.11	1.04	GeH_4 (4.22) H_2 (13.7) Ge_2H_6 (0.26)
5	95 monogl 5 h	6.01	4.55	5.12	0.76	nm
6	95	5.21	5.21	5.83	1.00	nm
7	95 THF 5.8 h	3.70	4.77	5.00	1.30	nm

TABLE I. Reactions of GeH₄ with LiAlH₄

^aAbbreviations: digl, diglyme; monogl, monoglyme; THF, tetrahydrofuran. ^bAbbreviations: d, day; h, hours; min, minutes. ^cMillimole quantities in parentheses. ^dCleavage with H₂O, unless otherwise specified. ^eQuantity not measured. ^fProducts characterized by IR spectra: GeH₄, ref. 11; Ge₂H₆, ref. 12; GeH₃Cl, ref. 14; Ge₃H₆, ref. 12. ^gCleavage with HCl.

Fig. 1. $KGeH_3-AlH_3$ reaction apparatus: A, vacuum line attachment sites; B, potassium introduction vessel; C, seal-off constrictions; D, potassium + GeH₄ reaction chamber; E, KGeH₃ storage vessel; F, break seal; G, AlCl₃ introduction tube; H, AlH₃ formation vessel; I, KGeH₃ + AlH₃ reaction vessel; J, NMR tube; K, medium porosity fritted filters; L, magnetic breaker.

(b) $KGeH_3$ with AlH_3

Reactions of $KGeH_3$ with AlH_3 in diglyme were carried out in the apparatus shown in Fig. 1. KGeH₃

[6] (0.80 mmol) was prepared at D from potassium (sublimed into D from B) and excess GeH₄ in diglyme (3 ml). The KGeH₃ was filtered through the frit into receiver E and maintained at -196 °C until needed for reaction with the AlH₃ solution. The AlH₃ [13] was prepared in the inverted apparatus at H. AlCl₃ (0.38 mmol) from G was added to LiAlH₄ (0.80 mmol) in diglyme at 25 °C in H. After reaction, the apparatus was inverted to allow filtration of the reaction solution into I. The KGeH₃ solution was then added from E to the AlH₃ solution in I at -196 °C and the mixture was warmed to -63 °C for 10 h during which time reaction occurred. Traces of H₂ formed. Samples for NMR spectra were removed directly in NMR tubes at J.

Characterization Studies

(a) Hydrolyses

Excess H_2O was condensed at -196 °C into the GeH_4 -LiAlH₄ or KGeH₃-AlH₃ reaction solution. The mixtures were warmed to 25 °C for 15 min, after which time H_2 and volatile hydrolysis products were removed *in vacuo*. These were separated by low-temperature fractional distillation and characterized. No attempt was made to analyze non-volatile residues. Data for LiGeH₃AlH₃ from GeH₄-LiAlH₄ reactions (experiments 2 and 4) are shown in Table I.

A KGeH₃-AlH₃ reaction solution (from 2.20 mmol KGeH₃ and 2.20 mmol AlH₃) when allowed to react with excess H_2O yielded H_2 , GeH₄ [11] (1.40 mmol), Ge₂H₆ [12] (0.12 mmol) and traces of higher germanes.

LiGeH₃AlH₃ solutions from GeH₄-LiAlH₄ (prepared as in experiment 4) and KGeH₃-AlH₃ reactions were allowed to react briefly, typically 5-10 min at 25 °C, with 1.2 M DCl in D₂O. The monogermane which formed was removed, purified by passage through a -196 °C trap, and subjected to mass spectral analysis (Table II).

TABLE II. Mass Spectral Analysis of Monogermanes^{a,b}

m/e	Control samples		Deuterolysis products		
	GeH4	GeH ₃ D	LiAlH ₄ -GeH ₄	KGeH3-AlH3	
70	17.8	14.1	17.4	16.2	
71	11.2	5.7	6.7	6.8	
72	69.4	44.1	47.9	46.5	
73	64.1	44.7	45.8	46.5	
74	94.1	9 0.0	91.6	92.9	
75	91.2	62.4	61.2	64.3	
76	100.0	100.0	100.0	100.0	
77	78.2	70.7	68.8	72.0	
78	16.1	67.1	66.6	66.0	
79	15.4	11.8	16.1	13.6	
80	< 0.5	12.1	15.7	11.9	
81	_	< 0.5	1.1	<0.6	
82	-	-	1.2	0.4	

^aPolyisotopic spectral data; values based on the average of three analyses. ^bPercent intensities relative to the base peak at m/e 76.

(b) Anhydrous HCl cleavage

LiGeH₃AlH₃ in diglyme was allowed to react with excess HCl (experiment 3). After 45 min, volatile reaction materials were removed *in vacuo*, separated and characterized.

(c) Spectral data: IR

Infrared spectra of GeH₄-LiAlH₄ and KGeH₃-AlH₃ reaction solutions were obtained on samples under N₂ pressed between CsCl plates. Spectra of samples from GeH₄-LiAlH₄ reactions show absorptions at (diglyme absorptions subtracted from spectrum) 1940(s), 1700(s), 765(s), 710(s), 665(w), 605(m), 405(vw), and 365(vw) cm⁻¹. Samples of KGeH₃-AlH₃ reaction solutions were closely similar, but with additional weak absorptions at 1955 and 680 cm⁻¹.

(d)¹H NMR

Diglyme solutions of LiGeH₃AlH₃, from GeH₄--LiAlH₄ reactions, exhibit a broad singlet at δ 1.87 ppm (GeH₃ protons). Broad resonance lines due to protons on Al could not be unambiguously assigned. The KGeH₃-AlH₃ reaction solutions yielded a resonance at δ 1.87 ppm and a lesser resonance of varying intensity at δ 2.02 ppm.

(e) Reactions with Me_3SiBr or CH_3I

A diglyme solution of a GeH_4 -LiAlH₄ reaction mixture prepared from 5.21 mmol GeH₄ and 5.21 mmol LiAlH₄ (experiment 6 reaction mixture) was allowed to react with 22.9 mmol of Me₃SiBr for 10 min at 0 °C. During this time the reaction mixture turned light-orange. Volatile reaction materials consisted of GeH₄ [11] (1.37 mmol), Me₃SiH [15] (13.4 mmol); Me₃SiGeH₃ [16] (0.09 mmol), Ge₂-H₆ [12] (0.05 mmol), and unreacted Me₃SiBr (9.15 mmol).

Diglyme solutions of $GeH_4-LiAlH_4$ reaction mixtures prepared at 95 °C were allowed to react with excess CH_3I : (i) a reaction solution from 10.8 mmol LiAlH₄ and 9.8 mmol GeH₄, when allowed to react with 16.4 mmol of CH_3I for 10 min at 25 °C, yielded a H₂-CH₄ mixture (6.14 mmol) along with GeH₄ [11] (0.43 mmol), CH₃GeH₃ [17] (0.17 mmol), and Ge₂H₆ [12] (1.1 mmol); (ii) a solution from 3.70 mmol GeH₄ and 2.77 mmol of LiAlH₄, when allowed to react with CH₃I for 60 min at 25 °C, yielded a H₂-CH₄ mixture (4.64 mmol), GeH₄ [11] (0.42 mmol), CH₃GeH₃ [17] (0.06 mmol), Ge₂H₆ [12] (0.90 mmol), CH₃Ge₂H₅ [18] (0.20 mmol), and traces of CH₃(GeH₂)_nGeH₃ [18].

Results and Discussion

Lithium tetrahydroaluminate reactions with excess GeH_4 in glyme ethers or tetrahydrofuran were studied at temperatures between 25 °C and 95 °C under conditions given in Table I. Reaction progress was monitored by periodically measuring the evolved H₂ [H₂(evol.)]. Reactions were taken as complete when H₂ evolution slowed or essentially stopped. At completion of reaction the GeH₄ consumed [GeH₄(react.)] was determined and the resulting reaction solutions were analyzed. At all temperatures studied, reaction proceeded smoothly to the eventual uptake of one equivalent of GeH₄, consistent with the reaction

$$GeH_4 + LiAlH_4 \longrightarrow H_2 + LiGeH_3AlH_3$$
(1)

At 25 °C, reaction is slow and requires months to reach a GeH₄(react.)/LiAlH₄(react.) ratio of one. Reaction proceeds faster at higher temperatures, typically approaching a unit GeH₄(react.)/LiAlH₄-(react.) ratio in several hours. Initially, at 25 °C, the GeH₄(react.)/H₂(evol.) ratio is close to unity (experiment 1); however, as reaction approaches one equivalent of GeH₄ consumed, the ratio decreases, typically to *ca.* 0.85–0.90 (e.g. experiment 2). The GeH₄-(react.)/H₂(evol.) ratio in 95 °C reactions is <1 from the outset (experiment 4) and these reactions are accompanied by distinct solution discoloration near reaction end, suggesting the involvement of Ge–Ge bond forming secondary reactions.

Reaction of KGeH₃ with AlH₃, analogous to that of KGeH₃ with B_2H_6 used to form KGeH₃BH₃ [6], was examined as a possible alternative route to solutions of the GeH₃AlH₃⁻ ion, according to

$$KGeH_3 + AlH_3 \longrightarrow KGeH_3AlH_3$$
(2)

Reactions were carried out in the apparatus shown in Fig. 1. This method is very tedious because both KGeH₃ [6, 18, 19] and AlH₃ [13, 20] are thermally unstable and must be handled with care during the reaction. Upon mixing the KGeH₃ and AlH₃ solutions at -63 °C, slight discoloration of the reaction solution and the evolution of traces of H₂ occurred.

Characterization of the GeH₄-LiAlH₄ and KGeH₃-AlH₃ reaction solutions has been accomplished by a combination of spectral (IR and ¹H NMR) and solution protolysis (H₂O, D₂O, and HCl cleavage) data. Infrared spectra of the GeH₄-LiAlH₄ and KGeH₃-AlH₃ reaction solutions are closely similar; however, the spectrum of the KGeH₃ reaction solutions contain several weak and unassigned extra absorptions. The GeH_4 -LiAlH₄ solutions exhibit absorptions at 1940 and 1700 cm⁻¹ attributable to Ge-H and Al-H absorptions, respectively. The Ge-H absorption is at lower frequency than most other germanes [11–13, 17] but is comparable to that seen in KGeH₃BH₃ (1930 cm⁻¹) [6]. The Al-H absorption in LiAlH₄ [21] occurs at 1740 cm⁻¹. The weak absorption at 365 cm⁻¹ is tentatively assigned to the Al-Ge bond stretch, although this absorption in other Ge-Al bond-containing compounds [1, 2] has not been reported.

¹H NMR spectra show a singlet resonance at δ 1.87 ppm, attributable to the GeH₃ moiety, and close to that (δ 2.30 ppm) reported for the GeH₃ protons of KGeH₃BH₃ [6]. Spectra above 25 °C were not obtained because of the solution's thermal instability. Resonances clearly attributable to Al-H protons were not seen, apparently a situation similar to that found for the Ph₃GeAlH₃⁻ ion [1]. This most likely results because of ²⁷Al quadrapolar relaxation effects.

Deuterolysis of GeH_4 -LiAlH₄ and KGeH₃-AlH₃ reaction solutions by their reaction with DCl/D_2O yields germane whose isotopic composition can be compared with that of pure GeH_4 [11] and GeH_3D [9] (Table II). From both sources, the germane obtained is primarily GeH_3D , although small amounts (<10%) of more highly deuterated material (e.g. GeH_2D_2 and $GeHD_3$) are present. The germane from the KGeH₃-AlH₃ system contains less GeHD₃ than that from the GeH₄-LiAlH₄ reaction. From both reactions the major reactive species is clearly the GeH₃ unit. Thus, large quantities of germanium moieties which are bonded to more than one hydridoaluminate species simultaneously (\Rightarrow GeH or \Rightarrow GeH₂) are not present.

Additional characterization of solution reaction species and inferences about the nature of secondary reactions are based on analyses of the protolysis (H₂O or HCl cleavage) reactions. Hydrolysis of 25 °C GeH₄-LiAlH₄ solutions yielded GeH₄ [GeH₄(prot)] and H₂ [H₂(prot)] in agreement with eqn. (3), consistent with the presence of the GeH₃.

$$LiGeH_{3}AlH_{3} + 4H_{2}O \longrightarrow GeH_{4} + LiAl(OH)_{4} + 3H_{2}$$
(3)

AlH₃⁻ ion. Hydrolysis of 95 °C solutions (e.g. experiment 4) yielded H₂, GeH₄, and small quantities of higher germanes, mainly Ge₂H₆. In all cases, the GeH₄(react.)/GeH₄(prot.) ratio was greater than unity (>1) and the H₂(prot.)/GeH₄(prot.) ratio exceeds 3 (>3). The total recovered Ge (sum of recovered GeH₄, Ge₂H₆, and higher germanes) amounted to 85–95% of the total Ge [based on GeH₄(react.)] in the system. Reactions with HCl were more complex, yielding both GeH₄ and GeH₃Cl and small amounts of Ge₂H₆ and Ge₃H₈. Generally in these, only 65–80% of the total Ge was recovered.

Four secondary reactions (eqns. (4)-(7)) which might be considered in the GeH₄ reaction and which could account for the observed reaction stoichiometry and protolysis products are

 $GeH_4 + GeH_3AlH_3^- \longrightarrow (GeH_3)_2AlH_2^- + H_2 \qquad (4)$

$$GeH_4 + GeH_3AlH_3^- \longrightarrow Ge_2H_5AlH_3^- + H_2$$
 (5)

$$GeH_{3}AlH_{3}^{-} + AlH_{4}^{-} \longrightarrow AlH_{3}GeH_{2}AlH_{3}^{2-} + H_{2}$$
(6)

$$2\text{GeH}_3\text{AlH}_3^- \longrightarrow \text{AlH}_4^- + \text{Ge}_2\text{H}_5\text{AlH}_3^- \tag{7}$$

An analysis of the qualitative effect each of these reactions would have on the theoretical GeH₄(react.)/LiAlH₄(react.), GeH₄(react.)/H₂(evol.), GeH₄(react.)/GeH₄(prot.), and H₂(prot.)/GeH₄(prot.) ratios, and the experimentally observed ratios are summarized in Table III. The observed GeH₄(react.)/H₂(evol.) ratio is <1. Thus reaction of additional GeH₄ with GeH₃AlH₃⁻ (eqn. (4)) to form more highly germylated species such as (GeH₃)₂AlH₂⁻ as occurs in PH₃-LiAlH₄ [22, 23] and AsH₃-LiAlH₄ [24] reactions, is not a major process.

The observed $GeH_4(react.)/H_2(evol.)$ and GeH_4 -(react.)/GeH₄(prot.) ratios are always slightly less than (<1) and greater than unity (>1), respectively. Participation of reactions (5)–(7) seems likely. Reac-

Equation	Initial reaction		Hydrolysis reaction		
	GeH ₄ (reacted)	GeH ₄ (reacted)	GeH ₄ (reacted)	H ₂ (protolized)	
	LiAlH ₄ (reacted)	H ₂ (evolved)	GeH ₄ (protolized)	GeH ₄ (protolized)	
Calculated rati	ios			· · · ·	
1	1	1	1	3	
4	>1	>1	1	<3	
5	>1	1	>1	3	
6	<1	<1	1	>3	
7	>1	1	>1	>3	
Observed ratio	8				
	<i>ca</i> . 1	<1	>1	>3	

TABLE III. Analysis of GeH ₄ -LiAlH ₄	Reaction Reactant and H	Iydrolysis Product Ratios
---	-------------------------	---------------------------

tion (6) could account for excess H_2 obtained in protolysis reactions and for the GeH_2D_2 among the GeH_4 -LiAlH_4 reaction product deuterolysis products. Reaction (5) and (7) could be the source of species which yield the higher germanes found among the H₂O and HCl protolysis products. Reaction (5) might be expected since Ge_2H_6 and other GeH_3 -substituted compounds (e.g. $GeH_3C_5H_5$ [25]) are known to undergo reaction to more highly catenated products under thermolysis conditions. Decomposition of the $GeH_3BH_3^-$ ion, in a process analogous to that in eqn. (7), has been reported previously [6].

It is interesting to note the difference in thermal stability between the $GeH_3AlH_3^-$ and $GeH_3BH_3^-$ ions. The latter, as the potassium salt can be crystallized from glyme ethers [6]. The compound melts at 98–99 °C with little decomposition. In contrast, LiGeH_3AlH_3 or KGeH_3AlH_3 when freed of solvent *in vacuo* or when 'salted out' by addition of a second solvent, evolves H_2 , GeH_4 , and Ge_2H_6 and undergoes immediate color change from colorless to deep orange.

Reactions of LiGeH₃AlH₃ with CH₃I and Me₃-SiBr indicate that LiGeH₃AlH₃ has only limited value as a germylating agent. Reaction with CH₃I yielded 4-5% CH₃GeH₃, along with larger amounts of GeH₄, CH₃Ge₂H₅, Ge₂H₆ and CH₄. Similarly, LiGeH₃AlH₃ with excess Me₃SiBr produces 1-2% yields of Me₃-SiGeH₃ along with Me₃SiH, GeH₄, and Ge₂H₆. Methane and Me₃SiH likely arise from hydroaluminate species reduction of CH₃I and Me₃SiBr, respectively. Germane and Ge₂H₆ formation indicates participation of other more complex processes, perhaps involving the germylene [GeH₂] intermediate as has been suggested to be the case for KGeH₃-BH₃ [6].

Acknowledgements

Support of this work by National Science Foundation Grants GP-8090 and CHE-8312856 and a University of Colorado Graduate School Fellowship for D.C.W. is greatfully acknowledged.

References

- 1 N. Duffant, J. Dunogues, R. Calas, P. Rivière, J. Satgé and A. Cazes, J. Organomet. Chem., 149, 57 (1978).
- 2 L. Roach and W. Erb, Angew. Chem., Int. Ed. Engl., 17, 604 (1978).
- 3 F. Glockling and J. R. C. Light, J. Chem. Soc. A, 623 (1967).
- 4 F. Glockling, J. R. C. Light and R. G. Stafford, J. Chem. Soc. A, 426 (1970).
- 5 J. W. Anderson and J. E. Drake, J. Chem. Soc., Dalton Trans., 951 (1972).
- 6 D. S. Rustad and W. L. Jolly, Inorg. Chem., 7, 213 (1968).
- 7 D. F. Shriver, 'The Manipulation of Air-sensitive Compounds', McGraw-Hill, New York, 1969.
- 8 W. L. Jolly and J. E. Drake, *Inorg. Synth.*, 7, 36 (1963).
 9 L. P. Lindeman and M. K. Wilson, *Z. Phys. Chem.*, 9, 29 (1956).
- 10 K. Clusius and G. Wolf, Z. Naturforsch., Teil A, 2, 495 (1947).
- 11 J. W. Straley, C. H. Tindal and H. H. Nielson, *Phys. Rev.*, 62, 161 (1942).
- 12 V. A. Crawford, K. H. Rhea and M. K. Wilson, *J. Chem. Phys.*, 37, 2377 (1962).
- 13 A. E. Finholt, A. C. Bond, Jr. and H. I. Schlesinger, J. Am. Chem. Soc., 69, 1199 (1947).
- 14 D. E. Freeman, K. H. Rhee and M. K. Wilson, J. Chem. Phys., 39, 2908 (1963).
- 15 D. F. Ball, P. L. Goggin, D. C. McKaen and L. A. Woodward, Spectrochim. Acta, 16, 1358 (1960).

- 16 E. Amberger and E. Muhlhofer, J. Organomet. Chem., 12, 55 (1968).
- 17 J. E. Griffiths, J. Chem. Phys., 38, 2879 (1968).
- 18 K. M. Mackay, R. D. George, P. Robinson and R. Watt, J. Chem. Soc. A, 1920 (1968).
- 19 D. S. Rustad and W. L. Jolly, Inorg. Chem., 6, 1986 (1967). 20 E. C. Ashby, Adv. Inorg. Chem. Radiochem., 8, 282
- (1966).
- 21 E. R. Lippincott, J. Chem. Phys., 17, 1351 (1949);

E. C. Ashby, F. R. Dobbs and H. P. Hopkins, Jr., J. Am. Chem. Soc., 95, 2823 (1973).

- A. E. Finholt, C. Helling, V. Imhof, L. Nelson and E. Jacobsen, *Inorg. Chem.*, 2, 504 (1963).
 A. D. Norman and D. C. Wingeleth, *Inorg. Chem.*, 9, 98 (1970)
- (1970).
- 24 J. W. Anderson and J. E. Drake, J. Chem. Soc. A, 3131 (1970).
- 25 O. C. Angus and S. R. Stobart, Chem. Commun., 127 (1973).