TERENCE J. KEMP and MARK A. SHAND

Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K. Received October 17, 1985

Abstract

The luminescence of uranyl ion in aqueous perchloric acid is rather weakly quenched on addition of simple amino-acids, and photoredox quantum yields measured as $\phi[U(IV)]$ are low (<0.2), but prolonged photolysis of frozen samples both in H₂O and D₂O at 77 K leads to the production of substratederived radicals identified by ESR, indicating decarboxylation as the principal pathway of photodecomposition.

The presence of sulphur atoms in amino-acids leads to: (i) much more efficient quenching (ii) lower photoredox quantum yields and (iii) the production of sulphur-centred radicals.

Introduction

Amino-acids are not easily oxidised by transitionmetal oxidants, and their interaction generally leads to complex formation. However these complexes are photo-labile even at 77 K and intermediate radicals have been identified following photolysis when the central metal is Ce(IV) [1], $[Fe(CN)_6]^{3-1}$ [2], Fe(III) [3–5], Co(III) [6] and Pb(IV) [7]. Photo-generated hydrogen atoms abstract from C-H bonds of amino-acids in acidic glasses at 77 K [8]. Flash photolysis of Cu(II) complexes of various amino-acids leads to Cu(II)-alkyl intermediates [9-11]. While many reports exist of the interaction of $[UO_2^{2^+}]^*$ with carboxylic acids and hydroxyacids [12], few studies have been carried out on amino-acids [13]. In this paper we detail kinetic results obtained by laser flash photolysis, indicating the level of reactivity, quantum yields of U(IV), indicating the degree of charge-separation from the initial radical-pair configuration, and ESR data referring to the nature of the primary ligand-derived radical. We note particularly the profound effects of introducing a sulphur atom into the amino-acid.

Experimental

Laser flash photolysis experiments were carried out with an Applied Photophysics Model K-347 system using 50 ns pulses of 347 nm radiation (ca. 100 mJ) as described before [14].

ESR experiments were performed at 77 K with a Bruker Model ER-200 tt spectrometer as described previously [13].

Samples were prepared by dissolving the aminoacid in a solution of uranyl perchlorate in aqueous HClO₄. Where heavy water was used as a solvent, the final isotopic composition was at least 99.8% ²H. Samples were frozen to 77 K prior to photolysis for 1–4 h using a 100 W Xe/Hg point-source, the output of which was filtered through pyrex and a UG-5 filter, *i.e.* $\lambda_{irr} = 330-410$ nm. Quantum yield measurements were also performed as reported previously [14].

Results

Laser Flash Photolysis

The lifetime of $[UO_2^{2+}]^*$ determined at its emission maximum of 508 nm in acidic solution was systematically reduced on addition of the various amino-acids. Pseudo-first-order rate constants (k_1) were determined at ten concentrations of each quencher to give the second-order quenching rate constants, k_2 , exemplified in Fig. 1 and collated in Table I.

© Elsevier Sequoia/Printed in Switzerland

Amino-acid	$k_2 (\text{mol}^{-1}\text{dm}^3\text{s}^{-1})$		
Glycine	enhancement	_	
DL-alanine	enhancement		
β-alanine	enhancement		
Serine	$(1.92 \pm 0.42) \times 10^{6}$		
DL-valine	$(1.13 \pm 0.29) \times 10^{6}$		
DL-leucine	$(5.71 \pm 0.25) \times 10^{6}$		
Threonine	$(4.29 \pm 0.22) \times 10^{6}$		
D-asparagine	$(2.45 \pm 0.31) \times 10^{6}$		
L-glutamine	$(2.48 \pm 0.21) \times 10^{6}$		
Isoleucine	$(4.78 \pm 0.22) \times 10^{6}$		
Histidine	$(1.78 \pm 0.08) \times 10^8$		
Tyrosine	$(1.66 \pm 0.10) \times 10^9$		
L-tryptophan	$(2.97 \pm 0.09) \times 10^9$		
L-phenylalanine	$(7.92 \pm 0.16) \times 10^8$		
DL-methionine	$(1.28 \pm 0.06) \times 10^9$		
L-cystine	$(5.67 \pm 0.01) \times 10^8$		
Cysteine	$(7.48 \pm 0.04) \times 10^8$		
CDTA	$(6.15 \pm 0.51) \times 10^8$		
EDTA	$(4.77 \pm 0.49) \times 10^8$		

TABLE I. Quenching of $[\mathrm{UO}_2^{2^+}]^*$ by Amino-acids and Aminopolycarboxylates^a

 ${}^{a}[UO_{2}{}^{2+}] = 0.2 \text{ mol } dm^{-3}$, [HClO₄] = 0.2 mol dm^{-3} ; medium water.

Quantum Yield Measurements

These were determined in the form of appearance of U(IV) at 648 nm and are exemplified in Fig. 2 and collated in Table II.

ESR Spectra

These are given in terms of the individual aminoacids below, and are exemplified in Fig. 3, and are collated in Table III.

β -Alanine

A six-line spectrum was obtained in H₂O medium with $a(H)_{av} = 23.0$ G (10 G = 1 mT) and g = 2.0031. The same spectrum was produced in D₂O, indicating that no coupling occurs to the N-H(D) protons.

We attribute the spectrum to the radical $^{\circ}CH_2$ -CH₂NH₃⁺ in which both α -protons and one β -proton show a(H) = 23 G, while the other β -proton shows a(H) = 46 G, corresponding to a 'locked' conformation facilitating hyperconjugation with the semioccupied orbital at C(1) [16] as in CH₃CH₂CH₂[•] [17] and other radicals of structure XCH₂CH₂[•].

Glycine

While a six-line spectrum of approximately binomial distribution was obtained in H₂O with $a(H)_{av}$ = 30.0 G and g = 2.00243, this was reduced to a 1:2:1 triplet in D₂O with $a(H)_{av} = 23.5$ G. The radicals responsible are, respectively, $CH_2NH_3^+$ and $CH_2ND_3^+$, in agreement with earlier findings [1, 2, 18].

Fig. 2. Development of absorbance of U(IV) at 648 nm during 401 nm photolysis of EDTA ($4.75 \times 10^{-3} \text{ mol dm}^{-3}$) and uranyl ion (as nitrate, 0.08 mol dm⁻³) in aqueous HClO₄ (0.20 mol dm⁻³). $T = 293 \pm 1 \text{ K}$.

TABLE II. Quantum Yields for U(IV) Appearance^a

Compound	$\phi(\mathrm{U^{IV}})$	
Glycine	< 0.017	
DL-alanine	0.094	
β-alanine	< 0.005	
Serine	0.084	
DL-valine	0.145	
DL-leucine	0.120	
Threonine	0.191	
D-asparagine	0.0182	
L-glutamine	0.128	
Isoleucine	0.143	
Histidine	< 0.005	
Tyrosine	< 0.005	
L-tryptophan	< 0.005	
L-phenylalanine	< 0.005	
CDTA	0.191	
EDTA	0.194	
$MeN(CO_2H)_2$	0.020	
DL-methionine	0.017	
L-cystine	0.0019	
Cysteine	0.007	

 ${}^{a}{UO_{2}}^{2+}$] = 0.08 mol dm⁻³, [HClO₄] = 0.2 mol dm⁻³ medium water.

Valine

While in H₂O a broad, poorly-resolved spectrum was obtained, in D₂O this simplified to a 1:2:1 triplet with a(H) = 24 G, g = 2.0028 which is assigned to Me₂CHCHND₃⁺ in agreement with Poupko *et al.* [2].

α-Alanine

An intense, complex spectrum is produced in H_2O while in D_2O this reduces to a five-line spectrum in a binomial intensity distribution with $a(H)_{av} =$

Substrate	Medium	ESR spectrum	Assignment
CH ₂ (NH ₃ ⁺)CO ₂ ⁻	H ₂ O	6 lines, 5H $\alpha = 30 \text{ G}$	CH ₂ NH ₃ ⁺
	D ₂ O	3 lines, 2H a = 23.5 G	[•] CH ₂ ND ₃ ⁺
H ₃ NCH ₂ CH ₂ CO ₂ [−]	H ₂ O	6 lines, 4H $a(H)_{\alpha} = 23 \text{ G}$ $a(H)_{\alpha} = 46 \text{ G}$	ĊH ₂ CH ₂ ŃH ₃
	D ₂ O	6 lines, 4H	ĊH ₂ CH ₂ ND ₃
Me ₂ CHCH(NH ₃)(CO ₂)	H ₂ O D ₂ O	broad, poorly, resolved 3 lines, 2H a(H) = 24 G	Me₂CHĊHŅH₃ Me₂CHĊHND₃
[¬] O ₂ CCH ₂ CH ₂ CH(NH ₃)(CO ₂ [¬])	H ₂ O	6 lines $a(H)_{aV} = 23 G$	ĊH ₂ CH ₂ CH(NH ₃)(CO ₂)
	D ₂ O	6 lines	ĊH ₂ CH ₂ CH(ND ₃)(CO ₂ ⁻)
⁻ O ₂ CCH ₂ CH(N ⁺ H ₃)(CO ₂ ⁻)	H ₂ O	5 lines $a(H)_{av} = 22 G$	ĊH ₂ CH(NH ₃)(CO ₂ ¬)
NH ₂ COCH ₂ CH ₂ CH(NH ₃)(CO ₂)	H 2O	7 lines, 6H a(2H) = 26 G a(1H) = 52 G	NH ₂ COCH ₂ CH ₂ CH ⁺ ₂ H ⁺ ₃
	D ₂ O	5 lines	NH ₂ COCH ₂ CH ₂ CHND ₃
NH ₂ COCH ₂ CH(NH ₃)(CO ₂ ⁻)	H ₂ O D ₂ O	7 lines, 6H 3 lines a(2H) = 26 G	NH2COCH2ĊHŅH3 NH2COCH2ĊHND3
HOCH ₂ CH(NH ₃)(CO ₂ ⁻)	D ₂ O	3 lines a(2H) = 23 G	DOCH2ĊHND3
$Me-S-(CH_2)_2CH(\dot{N}H_3)(CO_2)$	H ₂ O	intense singlet $\Delta H_{pp} = 33 \text{ G}$	
HS-CH ₂ -CH(NH ₃)(CO ₂ -)	H ₂ O	singlet $\Delta H_{pp} = 32.5 \text{ G}$	S-centred species
[SCH ₂ CH(NH ₃)(CO ₂)] ₂	H ₂ O	singlet $\Delta H_{pp} = 28 \text{ G}$	

TABLE III. Summary of ESR Data Relating to Radicals Produced at 77 K by Interaction of Amino-acids with Excited Uranyl Ion

28 G, g = 2.0024. The radical responsible is considered to be MeCHNH₃⁺ (MeCHND₃⁺ in D₂O) in agreement with Poupko *et al.* [2].

Glutamic acid

A six-line spectrum was found in both H₂O and D₂O. In H₂O the spectrum has $a(H)_{av} = 23$ G and g = 2.0026, and we assign it to the radical $\dot{C}H_2CH_2$ -CH(NH₃⁺)CO₂⁻⁻.

Aspartic acid

A five-line spectrum was found in H₂O with $a(H)_{av} = 22$ G, g = 2.0026 which is assigned to $\dot{C}H_2$ -CH($\dot{N}H_3$)(CO₂⁻).

Glutamine

A symmetrical weakly-resolved seven-line spectrum was produced in H₂O with $a(H)_{av} = 26$ G and g = 2.00265 which, in D₂O, yielded only five lines. The latter species corresponds to NH₂COCH₂CH₂-CHND₃⁺ with a(2H) = 26 G, a(1H) = 52 G.

Asparagine

A poorly-resolved seven-line spectrum in H_2O was reduced in D_2O to a basic broad triplet exhibiting some further structure, with a(2H) = 26.0 G, for which the most probable candidate species is NH_2 -COCH₂CHND₃⁺.

Serine

A complex spectrum in H₂O became a basic triplet in D₂O with a(2H) = 23.0 G and g = 2.0056, similar to that given by asparagine, and the most reasonable assignment is to the analogous radical, *i.e.* to HOCH₂-CHND₃⁺.

Methionine

An intense singlet was formed in H₂O with g = 2.0125 and $\Delta H_{pp} = 33$ G.

Cysteine

A singlet featuring some sub-structure was formed in H₂O with g = 2.0105 and $\Delta H_{pp} = 32.5$ G. Cystine

A singlet with some sub-structure was observed in H₂O with g = 2.0056 and $\Delta H_{pp} = 28$ G.

Discussion

We have noted before [13] the general inertness of glycine towards $[UO_2^{2+}]^*$ despite the highly oxidising character of the latter species, with an estimated reduction potential of +2.60 V [19]. This obviously extends to molecules of the general structure RCH(NH₃⁺)CO₂⁻ (R = alkyl), and only when significant additional functional groups are present does the second-order quenching rate constant exceed 4×10^6 dm³ mol⁻¹ s⁻¹. The fast rates of quenching with amino-acids bearing aromatic rings is associated with fast, reversible exciplex formation between the π -system and the excited U(VI) species, as established for a series of substituted benzenes [20] and benzoic acids and alkenes [21]. Support for this view is indicated by the immeasurably small quantum yields for U(IV) formation with this particular group of amino-acids (Table II).

While the kinetic quenching rates of $[UO_2^{2+}]^*$ by RCH(NH₃⁺)CO₂⁻ are very low for R = H, Me, Me₂-CH, Me₂CHCH₂, MeEtCH (Table I), the quantum yields for U(IV) production are nearly, or exceed, 0.1 where R is a branched alkyl group (valine, leucine, isoleucine). One must note here that the value of $\phi[U(IV)]$ as measured refers to all secondary processes leading to U(IV) after the initial primary photochemical act, eqn. (1). These will include not

$$Me_{2}CHCH(NH_{3}^{+})CO_{2}^{-} + [U(VI)]^{*} \longrightarrow Me_{2}CH\dot{C}H(NH_{3}^{+}) + UO_{2}^{+} + CO_{2} \qquad (1)$$

$$Me_{2}CH\dot{C}H(NH_{3}^{+}) + UO_{2}^{2+} \longrightarrow Me_{2}CHCH(NH_{2}) + H^{+} + UO_{2}^{+} \qquad (2)$$

$$2\mathrm{UO}_{2}^{+} \longrightarrow \mathrm{UO}_{2}^{2+} + \mathrm{U}(\mathrm{IV}) \tag{3}$$

$$Me_{2}CHCH(NH_{2}) + 2H_{2}O \longrightarrow Me_{2}CHCH(OH)(NH_{2}) + H_{3}O^{+}$$
(4)

$$Me_2CHCH(OH)(NH_2) \longrightarrow Me_2CHCH=O + NH_3$$
 (5)

only fast reduction of a second molecule of uranyl ion by the alkyl radical, eqn. (2), followed by the disproportionation, eqn. (3), but subsequent attack on $[UO_2^{2^+}]^*$ by the reactive aldehyde generated in eqn. (5): the ready photoreduction of U(VI) by simple aldehydes is established [22]. The aminoacids containing hydroxyalkyl groups such as serine and threonine give sizeable values for $\phi[U(IV)]$, in accord with the well-known reactivity of alkanols towards $[UO_2^{2^+}]^*$ [23]. Values of just under 0.2 are given by the polyaminocarboxylic acids, EDTA and CDTA, and these show a 10^2 -fold increase over the simple amino-acids in their rate of quenching of $[UO_2^{2+}]^*$: however, this reactivity must originate largely either in physical quenching processes, or in chemical quenching not leading to correspondingly large yields of separated radical-pairs.

A similar basic situation must exist for the three sulphur-containing amino-acids: these display secondorder kinetic quenching rate constants of between 5.67×10^8 and 1.29×10^9 dm³ mol⁻¹ s⁻¹, *i.e.* rather similar to those reported for simple thioethers and other sulphur compounds [15] while, as with these simple compounds, the quantum yield of the redox process is very small.

Thus while the rate of interaction between $[UO_2^{2^+}]^*$ and the thio-compounds is $>10^2$ -fold faster than for the simple amino-acids, the yield of redox products is *ca.* 10-fold lower.

Evidently the step k_{30a} operates in the Weller-type scheme [24] eqn. (6), with high efficiency in these systems:

$$R_{2}S + [UO_{2}^{2+}]^{*} \xrightarrow{k_{12}} [R_{2}S \cdot UO_{2}^{2+}]^{*}$$

$$[R_{2}S \cdot UO_{2}^{2+}]^{*} \xrightarrow{k_{23}} [R_{2}S^{+*} \cdot UO_{2}^{+}] \qquad (6)$$

$$R_{2}S + UO_{2}^{2+} \qquad R_{2}S^{+*} + UO_{2}^{+}$$

$$(back-ET) \qquad (diffusion apart)$$

The production of sulphur-centred, rather than carbon-centred radicals from the thio compounds is strongly suggested by the line-shapes and g-tensors of the ESR spectra of the irradiated systems (Table III), [15, 25]. Although in some respects $[UO_2^{2+}]^*$ behaves like $[O=U^V-O]$, *i.e.* a radical with its SOMO centred on an oxygen atom, such as HO^{*}, t-BuO^{*} and triplet benzophenone, Ph₂C^{*}-O^{*}, in its interaction with amino-acids it behaves uniquely. Thus while triplet benzophenone, like $[UO_2^{2+}]^*$ reacts very slowly with glycine at pH 7, and rapidly with EDTA, histidine, tryptophan tyrosine, and methionine [26], the yields of redox species determined by flash photolysis are generally much higher for triplet benzophenone than for the excited uranyl ion, *i.e.* in eqn. (5), $k_{30b} \ge k_{30a}$ for ³Ph₂CO.

References

- 1 D. Greatorex and T. J. Kemp, Trans. Faraday Soc., 67, 1576 (1971).
- 2 P. Poupko, I. Rosenthal and D. Elad, Photochem. Photobiol., 17, 395 (1973).
- 3 A. L. Poznyak, S. I. Arzhankov and G. A. Shagisutanova, *Biofizika*, 19, 233 (1974).

- 4 A. L. Poznyak and S. I. Arzhankov, Dokl. Akad. Nauk. BSSR, 23, 353 (1979).
- 5 A. L. Poznyak, G. A. Shagisultanova and S. I. Arzhankov, Biofizika, 15, 20 (1970).
- 6 A. L. Poznyak, S. I. Arzhankov, V. V. Pansevich and V. E. Stel'mushok, *Zh. Neorg. Khim.*, 23, 2105 (1978).
- 7 J. K. Kochi, R. A. Sheldon and S. S. Lande, *Tetrahedron*, 25, 1197 (1969).
- 8 H. R. Falle, F. S. Dainton and G. A. Salmon, J. Chem. Soc., Faraday Trans. 2, 19, 2001 (1976).
- 9 S. Das, G. R. Johnson, B. Nazhat and R. Saadalla-Nazhat, J. Chem. Soc., Faraday Trans. 1, 80, 2759 (1984).
- 10 C. Namasivayam and P. Natarajan, J. Polym. Sci. Polym. Chem. Ed., 21, 1371 (1983).
- 11 P. Natarajan and G. Ferraudi, Inorg. Chem., 20, 3708 (1981).
- 12 H. D. Burrows and T. J. Kemp, Chem. Soc. Rev., 3, 139 (1974).
- 13 N. W. Alcock, D. J. Flanders, T. J. Kemp and M. A. Shand, J. Chem. Soc., Dalton Trans., 517 (1985).
- 14 K. R. Butter and T. J. Kemp, J. Chem. Soc., Dalton Trans., 923 (1984).

- 15 H. B. Ambroz, K. R. Butter and T. J. Kemp, Faraday Discuss. Chem. Soc., 78, 107 (1984).
- 16 J. R. Morton, Chem. Rev., 64, 453 (1964).
- 17 P. B. Ayscough and C. Thomson, *Trans. Faraday Soc.*, 58, 1477 (1962).
- 18 R. P. Kohin and P. G. Nadeau, J. Chem. Phys., 44, 691 (1966).
- 19 C. K. Jorgensen and R. Reisfeld, J. Electrochem. Soc., 130, 681 (1983).
- 20 R. Matsushima and S. Sakuraba, J. Am. Chem. Soc., 93, 7143 (1971).
- 21 M. Ahmad, A. Cox, T. J. Kemp and Q. Sultana, J. Chem. Soc., Perkin Trans. 2, 1867 (1975).
- 22 R. M. Haas and K.-H. Gayer, Z. Anorg. Allg. Chem., 367, 102 (1969).
- 23 S. Sakuraba and R. Matsushima, Bull. Chem. Soc. Jpn., 43, 2359 (1970).
- 24 D. Rehm and A. Weller, Isr. J. Chem., 8, 259 (1970).
- 25 D. N. R. Rao, M. C. R. Symons and B. W. Wren, J. Chem. Soc., Perkin Trans. 2, 1681 (1984).
- 26 S. N. Battacharyya and P. K. Das, J. Chem. Soc., Faraday Trans. 2, 80, 1107 (1984).