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Abstract 

The luminescence of uranyl ion in aqueous per- 
chloric acid is rather weakly quenched on addition 
of simple amino-acids, and photoredox quantum 
yields measured as $[U(IV)] are low (<0.2), but 
prolonged photolysis of frozen samples both in HZ0 
and D20 at 77 K leads to the production of substrate- 
derived radicals identified by ESR, indicating de- 
carboxylation as the principal pathway of photo- 
decomposition. 

The presence of sulphur atoms in amino-acids 
leads to: (i) much more efficient quenching (ii) 
lower photoredox quantum yields and (iii) the pro- 
duction of sulphur-centred radicals. 

Introduction 

Amino-acids are not easily oxidised by transition- 
metal oxidants, and their interaction generally leads 
to complex formation. However these complexes 
are photo-labile even at 77 K and intermediate 
radicals have been identified following photolysis 
when the central metal is Ce(IV) [l], [Fe(CN)6]3- 
[2], Fe(II1) [3-S], Co(II1) [6] and Pb(IV) [7]. 
Photo-generated hydrogen atoms abstract from 
C-H bonds of amino-acids in acidic glasses at 77 K 
[S]. Flash photolysis of Cu(I1) complexes of various 
amino-acids leads to Cu(II)-alkyl intermediates 
[9-111. While many reports exist of the interaction 
of [uo22+] * with carboxylic acids and hydroxy- 
acids [ 121, few studies have been carried out on 
amino-acids [ 131. In this paper we detail kinetic 
results obtained by laser flash photolysis, indicating 
the level of reactivity, quantum yields of U(IV), 
indicating the degree of charge-separation from the 
initial radical-pair configuration, and ESR data 
referring to the nature of the primary ligand-derived 
radical. We note particularly the profound effects 
of introducing a sulphur atom into the amino-acid. 

Experimental 

Laser flash photolysis experiments were carried 
out with an Applied Photophysics Model K-347 

0020-l 693/86/$3 SO 

system using 50 ns pulses of 347 nm radiation (cu. 
100 mJ) as described before [ 141. 

ESR experiments were performed at 77 K with 
a Bruker Model ER-200 tt spectrometer as described 
previously [ 131. 

Samples were prepared by dissolving the amino- 
acid in a solution of uranyl perchlorate in aqueous 
HC104. Where heavy water was used as a solvent, 
the final isotopic composition was at least 99.8% 2H. 
Samples were frozen to 77 K prior to photolysis 
for l-4 h using a 100 W Xe/Hg point-source, the 
output of which was filtered through Pyrex and a 
UC-5 filter, i.e. hirr = 330-410 nm. Quantum yield 
measurements were also performed as reported 
previously [ 141. 

Results 

Laser Flash Photolysis 
The lifetime of [U022’]* determined at its emis- 

sion maximum of 508 nm in acidic solution was 
systematically reduced on addition of the various 
amino-acids. Pseudo-first-order rate constants (ki) 
were determined at ten concentrations of each 
quencher to give the second-order quenching rate 
constants, k2, exemplified in Fig. 1 and collated in 
Table I. 

01 I I I I 

0 1 2 3 4 

[ Phenylalonino 1 I mol d6’ 

Fig. 1. Quenching of excited many1 ion by L-phenylalanine. 
[UO,(NO3),] = 0.20 mol dmV3, [HClOe] = 0.20 mol dm-3, 
T=293 * 1 K. 
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TABLE I. Quenching of [UO,*+]* by Amino-acids and 

AminopolycarboxylateP 

Amino-acid ka (moI-’ dm3 s-l) 

Glycine 
DLalanine 

p-alanine 
Serine 

DL-valine 

DL-leucine 
Threonine 

D-asparagine 

L-glutamine 

Isoleucine 

Histidine 

Tyrosine 

L-tryptophan 

L-phenylalanine 

DL-methionine 

L-cystine 

Cysteine 

CDTA 

EDTA 

enhancement 

enhancement 

enhancement 

(1.92 zr 0.42) x lo6 

(1.13 * 0.29) x 106 

(5.71 -t 0.25) x lo6 

(4.29 * 0.22) x 106 

(2.45 i 0.31) x IO6 

(2.48 f 0.21) x lo6 

(4.78 t 0.22) x lo6 

(1.78 i 0.08) x lo8 

(1.66 * 0.10) x 109 

(2.97 i 0.09) x 109 

(7.92 + 0.16) x lo8 

(1.28 zt 0.06) x IO9 

(5.67 i 0.01) x lo8 

(7.48 * 0.04) x 10s 

(6.15 + 0.51) x 10s 

(4.77 i: 0.49) x 108 

“[UOa”] = 0.2 mol dmm3, [HC104] = 0.2 mol dme3; medi- 
um water. 

Quantum Yield Measurements 
These were determined in the form of appearance 

of U(IV) at 648 nm and are exemplified in Fig. 2 
and collated in Table II. 

ESR Spectra 
These are given in terms of the individual amino- 

acids below, and are exemplified in Fig. 3, and are 
collated in Table III. 

fl-Alanine 
A six-line spectrum was obtained in Hz0 medium 

with a(H),=23.0G(lOG= 1 mT) andg=2.0031. 
The same spectrum was produced in DzO, indicating 
that no coupling occurs to the N-H(D) protons. 

We attribute the spectrum to the radical ‘CH2- 
CH2NH3+ in which both a-protons and one &proton 
show a(H) = 23 G, while the other /3-proton shows 
a(H) = 46 G, corresponding to a ‘locked’ conforma- 
tion facilitating hyperconjugation with the semi- 
occupied orbital at C(1) [16] as in CH3CH2CHz’ 
[ 171 and other radicals of structure XCH,CH,‘. 

Glycine 
While a six-line spectrum of approximately bi- 

nomial distribution was obtained in Hz0 with a(H), 
= 30.0 G and g = 2.00243, this was reduced to a 
1:2:1 triplet in D20 with a(H), = 23.5 G. The 
radicals responsible are, respectively, 
and ‘CHzND3+, 

‘CH2NH3+ 
in agreement with earlier findings 

[l, 2, 181. 

Fig. 2. Development of absorbance of U(IV) at 648 nm 

during 401 nm photolysis of EDTA (4.75 X 10m3 mol dm”) 

and many1 ion (as nitrate, 0.08 mol dmm3) in aqueous HC104 

(0.20 mol dmW3). T = 293 -t 1 K. 

TABLE II. Quantum Yields for U(Iv) Appearancea 

Compound @(urv) 

Glycine <0.017 

DL-alanine 0.094 
palanine <0.005 

Serine 0.084 

DL-valine 0.145 

DL-leucine 0.120 

Threonine 0.191 

D-asparagine 0.0182 

L-glutamine 0.128 

Isoleucine 0.143 
Histidine <0.005 
Tyrosine <0.005 
L-tryptophan <0.005 
L-phenylalanine <0.005 

CDTA 0.191 

EDTA 0.194 

MeN(CO,H), 0.020 
DL-methionine 0.017 

L-cystine 0.0019 

Cysteine 0.007 

“[UO2*‘] =0.08 mol dmm3, [HC104] = 0.2 mol dmW3 
medium water. 

Valine 
While in Hz0 a broad, poorly-resolved spectrum 

was obtained, in D20 this simplified to a 1:2: 1 
triplet with e(H).= 24 G, g = 2.0028 which is as- 
signed to Me,CHCHND3+ in agreement with Poupko 
et al. [2]. 

or-Alanine 
An intense, complex spectrum is produced in Hz0 

while in DzO this reduces to a five-line spectrum 
in a binomial intensity distribution with a(H),= 
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F&, 3. ESR spectra produced at 77 K on phot+sis o, = 330-410 nm) of samples of amino-acids in aqueous HC104 media containing uranyl perchlorate. Arrow refers to DWH 

standard: (a) p-alanine/D>O; (b) a-alanine/HzO; (c) ol-alanine/DzO; (d) glycine/DzO; (e) glycine/HzO; (fl valine/H20; (g) methionine/HzO; (W cYsteke/HzO; (i) glutamine/HzO; 

(j) glutamine/DzO. !2 
..I 
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TABLE III. Summary of ESR Data Relating to Radicals Produced at 77 K by Interaction of Amino-acids with Excited Uranyl 
Ion 

Substrate 

CHa(NH,+)CO,- 

H&H2CH1C02- 

Me&HCH(iHs)(C02-) 

-O,CCH,CH,CH(rjH,)(COz--) 

-O$CH,CH(r;H,)(CO, 

NH2COCH2CHZCH(NHj)(C02-) 

NHzCOCHzCH(rjH,)(C02~ 

HOCHsCH(r;H,)(CO,-) 

Me-S-(CH&CH(EjH3)(C02_) 

HS-CH2-CH(r;H,)(CO,-) 

[ScH&H(~H,)(C0,_)12 

Medium 

Hz0 

W 

Hz0 

DzO 

Hz0 

DzO 

H2O 

D2O 

Hz0 

Hz0 

DzO 

H2O 

DzO 

I’20 

Hz0 

H20 

Hz0 

ESR spectrum Assignment 

6 lines, 5H ‘CH2NHs+ 
a=30G 
3 lines, 2H ‘CH2ND3+ 
a = 23.5 G 

6 lines, 4H d~scH$Hs 
a(H), = 23 G 
a(H)p = 46 G 
6 lines, 4H CH~CH&D~ 

broad, poorly, resolved MesCHdHGHs 
3 lines, 2H Me&HdHE;Ds 
a(H) = 24 G 

6 lines ~H~cH~cH(~~H~)(c~~~ 
a(H),, = 23 G 
6 lines ~H~cH~cH(I&)(c~~~ 

5 lines ~H~CH(P;H~)(C~~-) 
a(H),,, = 22 G 

7 lines, 6H NH2COCH2CH2dH~H3 
a(2H) = 26 G 
a(lH) = 52 G 
5 lines NH&OCH$H$H~Ds 

7 lines, 6H NH&OCH$HNHs 
3 lines NH&OCH#HljDs 
a(2H) = 26 G 

3 lines DOCH$HljDs 
a(2H) = 23 G 

intense singlet 

~PlJ =33G 

S-centred species singlet AHr,n = 32.5 G 

singlet AHn,, = 28 G 

28 G, g= 2.0024,. The radical ,responsible is consid- 
ered to be MeCHNHa+ (MeCHNDs+ in D20) in 
agreement with Poupko et al. 123. 

Glu tamic acid 
A six-line spectrum was found in both Hz0 and 

D20. In H20 the spectrum has a(H), = 23 .G and g 
= 2.0026, and we assign it to the radical CH2CH1- 
CH(NHa+)COa-. 

Aspartic acid 
A five-line spectrum was found in Hz0 with 

a(H) v = 22 G, g = 2.0026 which is assigned to CH,- 
CH(fiH3)(COZ-). 

Glutamine 
A symmetrical weakly-resolved seven-line spec- 

trum was produced in H20 with a(H),= 26 G and 
g = 2.00265 which, in DsO, yielded only five lines. 
The latter species corresponds to NH,COCH2CH,- 
CHNDa+ with a(2H) = 26 G, a( 1H) = 52 G. 

Asparagine 
A poorly-resolved seven-line spectrum in Hz0 was 

reduced in Da0 to a basic broad triplet exhibiting 
some further structure, with a(2H) = 26.0 G, for 
which the most probable candidate species is NH2- 
COCHsCHND,+. 

Serine 
A complex spectrum in Hz0 became a basic triplet 

in D20 with a(2H) = 23.0 G and g = 2.0056, similar 
to that given by asparagine, and the most reasonable 
assignment is to the analogous radical, i.e. to HOCH2- 
CHNI&+. 

Methionine 
An intense singlet was formed in Hz0 with g = 

2.0125 and AHHpp = 33 G. 

Cysteine 
A singlet featuring some sub-structure was formed 

in Hz0 withg = 2.0105 and AHnn = 32.5 G. 
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Cystine 
A singlet with some sub-structure was observed 

in Hz0 withg = 2.0056 and AH,,, = 28 G. 

Discussion 

given by the polyaminocarboxylic acids, EDTA and 
CDTA, and these show a 102-fold increase over the 
simple amino-acids in their rate of quenching of 
[U022’] *: however, this reactivity must originate 
largely either in physical quenching processes, or in 
chemical quenching not leading to correspondingly 
large yields of separated radical-pairs. 

We have noted before [13] the general inertness 
of glycine towards [U022+]* despite the highly 
oxidising character of the latter species, with an 
estimated reduction potential of +2.60 V [ 191. 
This obviously extends to molecules of the general 
structure RCH(NHa+)C02- (R = alkyl), and only 
when significant additional functional groups are 
present does the second-order quenching rate con- 
stant exceed 4 X lo6 dm3 mol-r s-l. The fast rates 
of quenching with amino-acids bearing aromatic 
rings is associated with fast, reversible exciplex 
formation between the 7r-system and the excited 
U(V1) species, as established for a series of substi- 
tuted benzenes [20] and benzoic acids and alkenes 
[21]. Support for this view is indicated by the im- 
measurably small quantum yields for U(IV) forma- 
tion with this particular group of amino-acids (Table 
II). 

A similar basic situation must exist for the three 
sulphur-containing amino-acids: these display second- 
order kinetic quenching rate constants of between 
5.67 X 10’ and 1.29 X 10’ dm3 mol-’ s-i, i.e. rather 
similar to those reported for simple thioethers and 
other sulphur compounds [ 151 while, as with these 
simple compounds, the quantum yield of the redox 
process is very small. 

Thus while the rate of interaction between 
[UO,2’] * and the thio-compounds is >102-fold 
faster than for the simple amino-acids, the yield of 
redox products is ca. lo-fold lower. 

Evidently the step k3ea operates in the Weller-type 
scheme [24] eqn. (6) with high efficiency in these 
systems: 

While the kinetic quenching rates of [U022’]* by 
RCH(NHs+)COs- are very low for R = H, Me, Me2- 
CH, Me2CHCH2, MeEtCH (Table I), the quantum 
yields for U(IV) production are nearly, or exceed, 
0.1 where R is a branched alkyl group (valine, 
leucine, isoleucine). One must note here that the 
value of $[U(IV)] as measured refers to all secondary 
processes leading to U(IV) after the initial primary 
photochemical act, eqn. (1). These will include not 

R2S + [UO,2*1.$ [R2SU022+] * 

[R2S-U022+]* 2 [R2S+‘*U02+1 

/ba \k30b 
(6) 

It2s t uoz2+ I R2S+’ + U02+ 

(back-ET) (diffusion apart) 

Me2CHCH(NH3+)C02- + [U(VI)] * --+ 

Me2CH6H(NH3+) + U02+ + CO2 (1) 

Me2CH6H(NH;+) + U02y -----f 

Me2CHCH(NH2) + H+ + U02+ (2) 

2uo2+ - uo22+ + U(IV) (3) 

Me2CHcH(NH2) + 2H20 -+ 

Me2CHCH(OH)(NH2) + HsO+ (4) 

Me2CHCH(OH)(NH2) --+ Me2CHCH=0 + NH3 (5) 

only fast reduction of a second molecule of uranyl 
ion by the alkyl radical, eqn. (2) followed by the 
disproportionation, eqn. (3), but subsequent attack 
on [U022+]* by the reactive aldehyde generated in 
eqn. (5): the ready photoreduction of U(VI) by 
simple aldehydes is established [22]. The amino- 
acids containing hydroxyalkyl groups such as serine 
and threonine give sizeable values for $[U(IV)], 
in accord with the well-known reactivity of alkanols 
towards [U022+] * [23]. Values of just under 0.2 are 

The production of sulphur-centred, rather than 
carbon-centred radicals from the thio compounds is 
strongly suggested by the line-shapes and g-tensors 
of the ESR spectra of the irradiated systems (Table 
III), [ 15, 251. Although in some respects [U022’]* 
behaves like [O=Uv-01, i.e. a radical with its SOMO 
centred on an oxygen atom, svch as HO’, t-BuO’ 
and triplet benzophenone, Ph,C-0’, in its interac- 
tion with amino-acids it behaves uniquely. Thus while 
triplet benzophenone, like [U02’+]’ reacts very 
slowly with glycine at pH 7, and rapidly with EDTA, 
histidine, tryptophan tyrosine, and methionine 
[26], the yields of redox species determined by 
flash photolysis are generally much higher for triplet 
benzophenone than for the excited uranyl ion, i.e. 
in eqn. (5) kaab 2 k3ea for 3Ph2C0. 
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