The Coordination of Small Molecules by Manganese(I1) Phosphine Complexes. Part 13". The Synthesis and Characterisation of some Novel Manganese(I1) Complexes of Tertiary Butylisocyanide, $M_2(CNBu^t)$ ($X = Cl$, Br, I, NCS), **and their Reaction with Tri(n-butyl)phosphine and Molecular Oxygen**

CHRISTOPHER G. BENSON: CHARLES A. McAULIFFE**. ANTHONY G. MACKIE and S. PETER TANNER[†] *Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 IQD, U.K.* (Received September 11, 1986)

Abstract

Novel tertiary butylisocyanide complexes of manganese(II) with unusual stoichiometry, MnX_2 - $(CNBu^t)$ $(X = Cl, Br, I, NCS)$, have been prepared and characterised by magnetic susceptibility measurements and infrared and electron spin resonance spectroscopy. For $X = Cl$, Br, I the complexes have been assigned a polymeric structure similar to that found for $MnI_2(PPhMe_2)$, whilst $Mn(NCS)_2(CNBu^t)$ is probably dimeric as the infrared spectrum exhibits bands assignable to both bridging and terminal thiocyanate groups. The $MnX_2(CNBu^t)$ show no ability to reversibly bind dioxygen, but in solution in tetrahydrofuran PBu_3^n displaces the isocyanide ligand and for $X = CI$, Br, I these solutions absorb dioxygen in a $1:1$ Mn: $O₂$ ratio.

Introduction

We have reported our investigations of manganese- (II) phosphine complexes, $MnX_2(PR_3)$ (X = Cl, Br, I, NCS), which can reversibly coordinate small molecules such as dioxygen $[1-4]$, carbon monoxide $[5]$, nitric oxide [6], and ethylene [7] and irreversibly coordinate carbon disulphide [8], sulphur dioxide [9] and tetracyanoethylene [10].

We have extended these studies to manganese(II) complexes containing ligands other than tertiary phosphines. For example, we have shown that the $Mn(OPPh₃)₄l₂$ complex can undergo an insertion reaction with sulphur dioxide to form $[Mn(OPPh_3)_4]$. $(OSOI)_2$, and half of the sulphur dioxide may be desorbed by heating [11]. We now wish to report our studies of manganese(II)/isocyanide complexes.

The isocyanide ligand in transition metal complexes can be formally regarded as an analogue of the CO ligand. Manganese(I1) complexes of isocyanides of general formula $[Mn(CNR)_6]X_2$ (R = Ph, Et, Bu^t, $CH=CH₂$) have previously been prepared by nitric acid oxidation of the corresponding manganese(I) complex, followed by precipitation with a suitable counterion (e.g. $CdBr_4^{2-}$, PF_6^- , NO_3^-) [12-15]. All of these complexes have the low-spin (t_{2g}^{5}) ground state and not the high-spin $(t_2^3e_g^2)$ configuration, which is more usual for manganese(I1) complexes. Cyclic voltammetry of $[Mn(CNR)_6]^{\hat{z}+}(z=1,2)$ species result in complexes of manganese in the 0, $+1$, $+2$, and $+3$ oxidation states [15-18]. A number of other manganese(I) complexes are known, e.g. $Mn_2(CO)_{10-n}(CNR)_n$ (n = 1-3), $Mn_2(CO)_7(CNR)$ - ${P(OPh)_3}_2$ and ${Mn_2(CO)_n(diphos)(CNR)}$ (n = 4, 5), formed by the reaction of RNC with $Mn_2(CO)_{10}$ $[19, 20]$, R'Mn(CO)₅ $[21]$, Mn₂(CO)₈ $[P(OPh)_3]$ ₂ [19] or $Mn_2(CO)_{5}$ (diphos) [22, 23]. In the case of manganese(I) complexes $\nu(CN)$ of the isocyanide ligand decreases in energy upon coordination, indicating $d\pi-\pi_{CN}^*$ bonding in the complexes, whereas for manganese(II) the $\nu(CN)$ increases on coordination [15,24].

It can thus be seen that manganese(I1) complexes of isocyanides are rare, but those which are known are of the $[Mn(CNR)_6]^{2+}$ type. Here we wish to report some novel $[MnX_2(CNBu^t)]$ $(X = Cl, Br, I, I)$ NCS) complexes and our observations of their reaction with PBu_3 ⁿ and molecular oxygen.

Results **and Discussion**

The method used to prepare the $MnX_2(CNBu^t)$ complexes is essentially the same as that used to prepare the analogous $MnX_2(PR_3)$ complexes (see 'Experimental'). It thus differs greatly from the methods used to prepare the $[Mn(CNR)_6]^{2+}$ complexes inasmuch as the method reported here is a direct one-step process employing anhydrous condi-

^{*}For Parts 11 and 12, see refs. 1 and 2, respectively.

^{**}Author to whom correspondence should be addressed. +Permanent address: Department of Chemistry, University

of West Florida, Pensacola, Fla. 32514, U.S.A.

Complex	Colour	Melting point $(^{\circ}C)$	$\mu_{\rm eff}(\mu_{\rm B})$	-C	н	N	x	Mn
MnCl ₂ (CNBu ^t)	White	>280	6.0	30.3(28.7)	4.3(4.9)		35.3(33.9)	26.5(26.3)
MnBr ₂ (CNBu ^t)	White	>280	5.6	21.2(20.1)	3.3(3.0)		52.7(53.7)	17.9(18.5)
$MnI_2(CNBu^t)$	vellow	126(d)	5.1	15.0(15.3)	2.9(2.3)	3.5(3.6)	62.2(64.8)	15.0(14.0)
$Mn(NCS)_{2}(CNBu^{t})$	pale green	> 280	6.0	32.8(33.1)	3.7(3.5)	16.4(16.5)		21.2(21.6)

TABLE I. Some Physical and Analytical $(\%)^2$ Data for the Manganese(II) Complexes

aFound(calc.).

TABLE II. Some Significant Infrared Bands for the Manganese(II) Complexes (cm⁻¹)

$\nu(CN)$	$\nu(Mn-C)$	$\nu(Mn-X-Mn)$	Other
2220(s)		234(sh)	
		188(br)	
2179(s)		120(br)	
2200(s)	$214(\text{sh})$		$2120(s)^{a}$
			$2098(s)^{a}$ 264(s) ^b
	2105(s)	213(sh) 213(m) 212(m)	

 $a_{\nu}(CN)$ of NCS group. $b_{\nu}(Mn-N)$.

tions, whereas the latter require the pre-preparation of the manganese(I) complex followed by subsequent oxidation [12, 131. Some physical properties and analytical data for the complexes are listed in Table I.

Some significant infrared spectral bands of the complexes as mulls are listed in Table II. A strong $\nu(CN)$ band due to the isocyanide ligand is present in the $2220-2179$ cm⁻¹ region, which may be compared to $\nu(CN)$ in the free ligand at 2122 cm⁻¹. Isocyanide ligands are capable of acting as either good σ -donors or π -acceptors [15,24] and, in general, CNBu^t behaves as a π -acceptor in zerovalent complexes, $\nu(CN)$ decreases on coordination and as a σ -donor, $\nu(CN)$ increases in energy on coordination, towards metals in higher oxidation states. It is clearly acting as a σ -donor ligand in these MnX₂(CNBu^t) complexes. The magnitude of the shift to higher energy, Cl(78 cm^{-1}) > Br(60 cm⁻¹) > I(57 cm⁻¹), is in accord with the electronegativity of the coordinated halogen, causing an overall shift in electron density away from the CNBu^t ligand towards the halide, $X \leftarrow Mn \leftarrow$ $CNBu^t$.

For the $MnX_2(CNBu^t)$ (X = Cl, Br, I) complexes only one $\nu(Mn-X)$ band, assignable to bridging Mn-X-Mn moieties, Table II, is observable, and it is tempting, in the absence of terminal $\nu(Mn-X)$ bands, to assign the complexes the structure found for the analogous $MnI_2(PPhMe_2)$ (I) [25]. For $Mn(NCS)_2)$ -(CNBu^t), however, there are two ν (CN) bands assignable to thiocyanate at 2120 and 2097 cm^{-1} . Using accepted criteria [26], these can be assigned to bridging and terminal thiocyanate, respectively, suggesting a dimeric structure II . All of the complexes

exhibit an infrared band between $214-212$ cm⁻¹, tentatively assigned to $\nu(Mn-C)$.

The room temperature magnetic moments are listed in Table I. The values, $6.0-5.1 \mu_B$, are, for the most part, consistent with a degree of spin-pairing via Mn-X-Mn bridges and appear to mirror the magnetic behaviour of the analogous phosphine complexes. They also differ fundamentally from the lowspin hexakis(isocyanide)manganese(II) complexes [12]. The variable room temperature magnetic susceptibility measurements for $MnBr_2(CNBu^t)$ show, Fig. 1, that this complex obeys the Curie-Weiss law with θ = 28 K, suggesting antiferromagnetism, Fig. 1.

The room temperature X-band powder ESR spectra of the $MnX_2(CNBu^t)$ show only single intense peaks at $g = 2$, providing no unambiguous structural information. However, the complexes dissolved in tetrahydrofuran (THF) and the X-band spectra at 93 K, Figs. 2-5, did yield some relevant structural data.

 $\frac{6}{100}$ 100 200 $\frac{1}{100}$ 71 k 300 Fig. 1. Graph of reciprocal magnetic susceptibility vs. temperature for MnBr₂(CNBu^t).

Fig. 2. X-band ESR spectra of (a) $MnCl₂(CNBu^t)$ and (b) $MnCl₂(PPhBu₂ⁱ)$ in frozen THF, 93 K.

Fig. 3. X-band ESR spectra of (a) $MnBr(CNBu^t)$ and (b) $MnBr_2(PPhBu_2^i)$ in frozen THF, 93 K.

Fig. 4. X-band ESR spectra of (a) $MnI_2(CNBu^t)$ and (b) $MnI₂(PPhBu₂ⁱ)$ in frozen THF, 93 K.

For the $MnX_2(CNBu^t)$ (X = Br, I), Figs. 3 and 4, peaks at $g = 6$ and $g = 2$ suggest axial symmetry and structure **III** would seem likely in tetrahydrofuran solution. Whilst the ESR spectra of the MnX_2 -

Fig. 5. X-band ESR spectra of (a) $Mn(NCS)_2(CNBu^t)$ and (b) Mn(NCS) ${P(C_5H_{11})_3}$ in frozen THF, 93 K.

 $(CNBu^t)$ (X = Cl, NCS) are more complex, Figs. 2 and 5, they are also indicative of axial symmetry. Further evidence for structure **III** is available from the solution infrared spectrum which exhibits only a single band at 2097 cm^{-1} assignable to terminal Mn-NCS moieties.

Whilst the stoichiometry and magnetic and ESR properties of the $MnX_2(CNBu^t)$ complexes mirror those of the $MnX_2(PR_3)$ complexes no activity towards the reversible coordination of dioxygen has been observed in the former. Figures 2-5 contain a comparison of the ESR spectra of the two types of complexes (for $X = C1$, I, NCS) and it can be seen that there are strong similarities in THF solution. The exception is the bromide, for, whilst $MnBr_2(CNBu^t)$ does exhibit peaks at $g = 2$ and $g = 6$, Fig. 3, the $g = 6$ peak is of a different character from that of, for example, MnBr₂(PPhBu₂ⁱ).

Phosphine/Isocyanide Exchange Reactions

Although no activity towards dioxygen binding was observed for the $\text{MnX}_2(\text{CNBu}^t)$ complexes, tetrahydrofuran solutions of some $MnX_2(CNBu^t)$ complexes became active on addition of a stoichiometric $(1:1)$ quantity of PBu₃ⁿ, Table III. All measurements were made at 193 K using our standard gas burette apparatus [3].

The data given in Table III indicate that all the halide complexes, $MnX_2(CNBu^t)$ (X = Cl, Br, I), on addition of $PBu_3^n(1:1)$, are active towards dioxygen coordination. The pseudohalide thiocyanate complex does not, however, form an active complex with PBu_3^n in tetrahydrofuran. This is consistent with data from observations of $Mn(NCS)_2(PBu_3^n)$ in THF solution [27].

On exposure of THF solutions of a 1:1 mixture of $MnX_2(CNBu^t)$ (X = Cl, Br, I) and PBu₃ⁿ at 0 °C to an atmosphere of dry dioxygen a rapid and vivid colour change occurs. The visible spectra of the $MnCl₂(CNBu^t)/PBu₃ⁿ/O₂$ and $MnBr₂/PBu₃ⁿ)O₂$ systems exhibited absorption bands at 529 and 395 nm $(X = C)$ and 574 and 418 nm $(X = Br)$, the spectra being identical to those found for $MnX_2(PBu_3^n)$ - $(0₂)$ (X = Cl, Br) complexes in tetrahydrofuran [28]. The infrared spectra of these solutions exhibit bands at *ca.* 2120 cm⁻¹, assignable to free CNBu^t. The reactions may thus be expressed

$$
MnX_2(CNBu^t) + PBu_3^n \xrightarrow[0^\infty]{O_2} \rightarrow
$$

 $MnX_2(PBu_3^n)(O_2) + CNBu^t$

The $MnI_2(CNBu^t)/PBu_3^n$ system also undergoes a vivid colour change in THF at 195 K when exposed to dioxygen. On warming to room temperature,

Complex Concentration $(X 10^{-3} \text{ mol dm}^{-3})$ Total $O₂$ uptake $(cm³)$ Less blank $(cm³)$ $Mn:O₂$ ratio $MnCl₂(CNBu^t)/PBu₃ⁿ$ 4.44 32.0 10.0 $MnBr_2(CNBu^t)/PBu_3^n$ 1.01 6.19 35.2 13.2 $Mnl₂(CNBu^t)/PBu₃n$ 0.95 42.6 20.6 $Mn(NCS)_{2}(CNBu^{t})/PBu_{3}n$ 1.01 $\frac{23}{23}$ 22.4 0 0

TABLE III. Dioxygen Uptake for the $MnX_2(CNBu^t)/PBu_3^T$ System^a

 a 100 cm³ aliquots; blank THF absorbs 22.0 cm³ dioxygen at 193 K.

&in(H) Complexes of Tertiary Butylisocyanide 195

Fig. 6. X-band ESR spectra of (a) $MnCl_2(CNBu^t) + PBu_3^m$ and (b) $MnCl₂(PBu₃ⁿ)$ in frozen THF, 93 K.

Fig. 7. X-band ESR spectra of (a) $MnBr_2(CNBu^t) + PBu_3^h$ and (b) $MnBr_2(PBu_3^n)$ in frozen THF, 93 K.

however, the green colour rapidly dispersed, consistent with observations on the $MnI_2(PBu_3^n)/O_2$ system [28].

Further evidence for a ligand-exchange process

Fig. 8. X-band ESR spectra of (a) $MnI_2(CNBu^t) + PBu_3^m$ and (b) $MnI_2(PBu_3^n)$ in frozen THF, 93 K.

Fig. 9. X-band ESR spectra of (a) $Mn(NCS)_2(CNBu^t)$ + PBu₃ⁿ and (b) Mn(NCS)₂{P(C₅H₁₁)₃} in frozen THF, 93 K.

taking place on addition of $PBu₃ⁿ$ to $MnX₂(CNBu^t)$ comes from ESR spectra which show subtle differences between the $MnX_2(CNBu^t)$ and the MnX_2 - $(CNBu^t)/PR₃$ systems, Figs. 6–9.

Experimental

Anhydrous manganese(I1) salts were prepared as previously reported [29]. Physical measurements were performed as published earlier [30]. Gas uptakes were carried out as described in ref. 3.

Preparation of MnXz(CNBut) Complexes

The method was the same for each complex and will be exemplified for $Mn(NCS)$ ₂(CNBu^t) here: anhydrous manganese(H) thiocyanate (1.02 g, 6.0 mmol) was added to freshly distilled dry toluene (70 cm^3) in a 250 cm³ side-arm flask which had previously been flame dried *in uacuo.* Tertiary butylisocyanide (0.67 cm^3) (Fluka Chemicals) was added and the mixture stirred for 72 h. The resulting yellow-white complex was filtered using a Schlenk apparatus and dried *in vacua.*

Acknowledgements

We are grateful to The Science Research Council and The Central Electricity Generating Board for the award of a CASE Studentship (C.G.B.) and The Board of Regents of The University of West Florida for Sabbatical Leave (S.P.T.).

References

- 1 D. S. Barratt and C. A. McAuliffe, *J. Chem. Sot., Dalton Trans.,* submitted for publication.
- 2 D. S. Barratt and C. A. McAuliffe, Inorg. *Chim. Acta,* submitted for publication.
- 3 C. A. McAuliffe, H. F. Al-Khateeb, D. S. Barratt, J. C. Briggs, A. Challita, A. Hosseiny, M. G. Little, A. G. Mackie and K. Minten, *J. Chem. Soc., Dalton Trans.*, *2148* (1983).
- *4* M. G. Little, C. A. McAuliffe and J. B. Raynor, *J. Chem. Sot., Chem. Commun., 68 (1982).*
- *5 C.* A. McAuliffe, D. S. Barratt, C. G. Benson, A. Hosseiny, M. G. Little and K. Minten, *J. Organomet. Chem., 258, 23* (1983).
- *6* D. S. Barratt and C. A. McAuliffe, *J. Chem. Sot., Chem. Commun., 594* (1984).
- 7 G. A. Gott and C. A. McAuliffe, *J. Chem. Sot., Dalton Trans.,* accepted for publication (Paper 6/1561).
- 8 D. S. Barratt and C. A. McAuliffe, *Inorg. Chim. Acta*, 97, *37* (1985).
- 9 D. S. Barratt, C. G. Benson, G. A. Gott, C. A. McAuliffe and S. P. Tanner, *J. Chem. Sot., Dalton Trans., 2661* (1985).
- 10 G. A. Gott and C. A. McAuliffe, *J. Chem. Sot., Dalton Trans.,* (1987) in press (Paper 6/987).
- 11 G. A. Gott, J. Fawcett, C. A. McAuliffe and D. R. Russell, *J. Chem. Sec., Chem. Commun., 1283* (1984).
- 12 L. Malatesta and F. Bonati, 'Isocyanide Complexes of Metals', Wiley, New York, 1971.
- 13 L. Naldini, *Gazz. Chim. Ital., 90, 87 1 (1960).*
- *14* D. S. Matteson and R. A. Bailey, *J. Am.* Chem. Sot., 90, 3761 (1968).
- 15 D. T. Plummer and R. J. Angelici, *Inorg. Chem., 22, 4063* (1983).
- 16 P. M. Treichel and G. E. Dirreen, *J. Organomet. Chem., 39, c20* (1972).
- 17 P. M. Treichel, G. E. Dirreen and H. J. Much, *J. Organomet. Chem., 44, 339* (1972).
- 18 P. M. Treichel, D. W. Firsich and G. P. Essenmacher, *Inorg. Chem., 18. 2405* (1979).
- 19 S. Grant, J. Newman and A. R. Manning, *J. Organomet. Chem., 96,* Cl1 (1975).
- 20 R. D. Adams and D. E. Chodosh, *J. Organomet. Chem., 87, C48* (1975).
- 21 K. K. Joshi, P. L. Pauson and W. H. Stubbs, *J. Organomet. Chem., I,* 51 (1963).
- 22 A. L. Balch and L. S. Benner, *J. Organomet. Chem.*, 135, *339* (1977).
- *23* L. S. Benner, M. M. Ohnstead and A. L. Balch, *J. Organomet. Chem., 159, 289 (1978).*
- 24 F. A. Cotton and F. Zingales, *J. Am. Chem. Soc.*, 83, 351 (1961).
- 25 T. J. King, B. Beagley, J. C. Briggs. A. Hosseiny, C. A. McAuliffe, K. L. Minten and W. E. Hill, *J. Chem. Soc.*, *Chem. Commun., 1305 (1984).*
- 26 A. H. Norbury, *Adv. Inorg. Chem. Radiochem., 17, 231 (1975).*
- *27* A. Hosseiny, *Ph.D. Thesis,* University of Manchester, 1980.
- 28 H. F. Al-Khateeb, *Ph.D. Thesis,* University of Manchester, 1980.
- 29 A. Hosseiny, A. G. Mackie, C. A. McAuliffe and K. Minten, Inorg. *Chim. Acta. 49, 99 (198 1).*
- *30* A. Hosseiny, C. A. McAuliffe, K. Minten, M. J. Parrot, R. Pritchard and J. Tames, *Inorg. Chim. Acta, 39, 227 (1980).*