The Coordination of Small Molecules by Manganese(II) Phosphine Complexes. Part 13*. The Synthesis and Characterisation of some Novel Manganese(II) Complexes of Tertiary Butylisocyanide, $MnX_2(CNBu^t)$ (X = Cl, Br, I, NCS), and their Reaction with Tri(n-butyl)phosphine and Molecular Oxygen

CHRISTOPHER G. BENSON; CHARLES A. MCAULIFFE**, ANTHONY G. MACKIE and S. PETER TANNER[†] Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD, U.K. (Received September 11, 1986)

Abstract

Novel tertiary butylisocyanide complexes of manganese(II) with unusual stoichiometry, MnX_2 -(CNBu^t) (X = Cl, Br, I, NCS), have been prepared and characterised by magnetic susceptibility measurements and infrared and electron spin resonance spectroscopy. For X = Cl, Br, I the complexes have been assigned a polymeric structure similar to that found for $MnI_2(PPhMe_2)$, whilst $Mn(NCS)_2(CNBu^t)$ is probably dimeric as the infrared spectrum exhibits bands assignable to both bridging and terminal thiocyanate groups. The $MnX_2(CNBu^t)$ show no ability to reversibly bind dioxygen, but in solution in tetrahydrofuran PBu_3^n displaces the isocyanide ligand and for X = Cl, Br, I these solutions absorb dioxygen in a 1:1 $Mn:O_2$ ratio.

Introduction

We have reported our investigations of manganese-(II) phosphine complexes, $MnX_2(PR_3)$ (X = Cl, Br, I, NCS), which can reversibly coordinate small molecules such as dioxygen [1-4], carbon monoxide [5], nitric oxide [6], and ethylene [7] and irreversibly coordinate carbon disulphide [8], sulphur dioxide [9] and tetracyanoethylene [10].

We have extended these studies to manganese(II) complexes containing ligands other than tertiary phosphines. For example, we have shown that the $Mn(OPPh_3)_4l_2$ complex can undergo an insertion reaction with sulphur dioxide to form $[Mn(OPPh_3)_4$ - $(OSOI)_2]$, and half of the sulphur dioxide may be desorbed by heating [11]. We now wish to report our studies of manganese(II)/isocyanide complexes.

The isocyanide ligand in transition metal complexes can be formally regarded as an analogue of the CO ligand. Manganese(II) complexes of isocyanides of general formula $[Mn(CNR)_6]X_2$ (R = Ph, Et, Bu^t, CH=CH₂) have previously been prepared by nitric acid oxidation of the corresponding manganese(I) complex, followed by precipitation with a suitable counterion (e.g. $CdBr_4^{2-}$, PF_6^- , NO_3^-) [12–15]. All of these complexes have the low-spin (t_{2g}^{5}) ground state and not the high-spin $(t_2^{3}e_g^{2})$ configuration, which is more usual for manganese(II) complexes. Cyclic voltammetry of $[Mn(CNR)_6]^{z+}$ (z = 1, 2) species result in complexes of manganese in the 0, +1, +2, and +3 oxidation states [15–18]. A number of other manganese(1) complexes are known, e.g. $Mn_2(CO)_{10-n}(CNR)_n$ (n = 1-3), $Mn_2(CO)_7(CNR)$ - $\{P(OPh)_3\}_2$ and $Mn_2(CO)_n(diphos)(CNR)$ (n = 4, 5), formed by the reaction of RNC with Mn₂(CO)₁₀ [19, 20], R'Mn(CO)₅ [21], $Mn_2(CO)_8 \{P(OPh)_3\}_2$ [19] or Mn₂(CO)₅(diphos) [22, 23]. In the case of manganese(I) complexes $\nu(CN)$ of the isocyanide ligand decreases in energy upon coordination, indicating $d\pi - \pi_{CN}^*$ bonding in the complexes, whereas for manganese(II) the $\nu(CN)$ increases on coordination [15, 24].

It can thus be seen that manganese(II) complexes of isocyanides are rare, but those which are known are of the $[Mn(CNR)_6]^{2+}$ type. Here we wish to report some novel $[MnX_2(CNBu^{t})]$ (X = Cl, Br, I, NCS) complexes and our observations of their reaction with PBu₃ⁿ and molecular oxygen.

Results and Discussion

The method used to prepare the $MnX_2(CNBu^t)$ complexes is essentially the same as that used to prepare the analogous $MnX_2(PR_3)$ complexes (see 'Experimental'). It thus differs greatly from the methods used to prepare the $[Mn(CNR)_6]^{2+}$ complexes inasmuch as the method reported here is a direct one-step process employing anhydrous condi-

^{*}For Parts 11 and 12, see refs. 1 and 2, respectively.

^{**}Author to whom correspondence should be addressed.

[†]Permanent address: Department of Chemistry, University of West Florida, Pensacola, Fla. 32514, U.S.A.

Complex	Colour	Melting point (°C)	$\mu_{eff}(\mu_{B})$	С	Н	N	X	Mn
MnCl ₂ (CNBu ^t)	White	>280	6.0	30.3(28.7)	4.3(4.9)		35.3(33.9)	26.5(26.3)
MnBr ₂ (CNBu ^t)	White	>280	5.6	21.2(20.1)	3.3(3.0)		52.7(53.7)	17.9(18.5)
MnI ₂ (CNBu ^t)	yellow	126(d)	5.1	15.0(15.3)	2.9(2.3)	3.5(3.6)	62.2(64.8)	15.0(14.0)
Mn(NCS) ₂ (CNBu ^t)	pale green	>280	6.0	32.8(33.1)	3.7(3.5)	16.4(16.5)		21.2(21.6)

TABLE I. Some Physical and Analytical (%)^a Data for the Manganese(II) Complexes

^aFound(calc.).

TABLE II. Some Significant Infrared Bands for the Manganese(II) Complexes (cm⁻¹)

Compound	ν(CN)	v(Mn-C)	$\nu(Mn-X-Mn)$	Other
MnCl ₂ (CNBu ^t)	2220(s)	213(sh)	234(sh)	
MnBr ₂ (CNBu ^t)	2105(s)	213(m)	188(br)	
MnI ₂ (CNBu ^t)	2179(s)	212(m)	120(br)	
Mn(NCS) ₂ CNBu ^t)	2200(s)	214(sh)		2120(s) ^a
		- (- /		2098(s) ^a
				264(s) ^b

 $a_{\nu}(CN)$ of NCS group. $b_{\nu}(Mn-N)$.

tions, whereas the latter require the pre-preparation of the manganese(I) complex followed by subsequent oxidation [12, 13]. Some physical properties and analytical data for the complexes are listed in Table I.

Some significant infrared spectral bands of the complexes as mulls are listed in Table II. A strong $\nu(CN)$ band due to the isocyanide ligand is present in the 2220-2179 cm⁻¹ region, which may be compared to $\nu(CN)$ in the free ligand at 2122 cm⁻¹. Isocyanide ligands are capable of acting as either good σ -donors or π -acceptors [15, 24] and, in general, CNBu^t behaves as a π -acceptor in zerovalent complexes, ν (CN) decreases on coordination and as a σ -donor, $\nu(CN)$ increases in energy on coordination, towards metals in higher oxidation states. It is clearly acting as a σ -donor ligand in these MnX₂(CNBu^t) complexes. The magnitude of the shift to higher energy, Cl(78 cm^{-1}) > Br(60 cm⁻¹) > I(57 cm⁻¹), is in accord with the electronegativity of the coordinated halogen, causing an overall shift in electron density away from the CNBu^t ligand towards the halide, $X \leftarrow Mn \leftarrow$ CNBu^t.

For the $MnX_2(CNBu^t)$ (X = Cl, Br, I) complexes only one $\nu(Mn-X)$ band, assignable to bridging Mn-X-Mn moieties, Table II, is observable, and it is tempting, in the absence of terminal $\nu(Mn-X)$ bands, to assign the complexes the structure found for the analogous MnI₂(PPhMe₂) (I) [25]. For Mn(NCS)₂)-(CNBu^t), however, there are two $\nu(CN)$ bands assignable to thiocyanate at 2120 and 2097 cm⁻¹. Using accepted criteria [26], these can be assigned to bridging and terminal thiocyanate, respectively, suggesting a dimeric structure II. All of the complexes

exhibit an infrared band between 214-212 cm⁻¹, tentatively assigned to ν (Mn-C).

The room temperature magnetic moments are listed in Table I. The values, $6.0-5.1 \ \mu_B$, are, for the most part, consistent with a degree of spin-pairing via Mn-X-Mn bridges and appear to mirror the magnetic behaviour of the analogous phosphine complexes. They also differ fundamentally from the lowspin hexakis(isocyanide)manganese(II) complexes [12]. The variable room temperature magnetic susceptibility measurements for MnBr₂(CNBu^t) show, Fig. 1, that this complex obeys the Curie-Weiss law with $\theta = 28$ K, suggesting antiferromagnetism, Fig. 1.

The room temperature X-band powder ESR spectra of the $MnX_2(CNBu^t)$ show only single intense peaks at g = 2, providing no unambiguous structural information. However, the complexes dissolved in tetrahydrofuran (THF) and the X-band spectra at 93 K, Figs. 2–5, did yield some relevant structural data.

Fig. 1. Graph of reciprocal magnetic susceptibility v_s . temperature for $MnBr_2(CNBu^t)$.

Fig. 2. X-band ESR spectra of (a) $MnCl_2(CNBu^t)$ and (b) $MnCl_2(PPhBu_2^i)$ in frozen THF, 93 K.

Fig. 3. X-band ESR spectra of (a) $MnBr(CNBu^{t})$ and (b) $MnBr_{2}(PPhBu_{2}^{i})$ in frozen THF, 93 K.

Fig. 4. X-band ESR spectra of (a) $MnI_2(CNBu^t)$ and (b) $MnI_2(PPhBu_2^i)$ in frozen THF, 93 K.

For the $MnX_2(CNBu^t)$ (X = Br, I), Figs. 3 and 4, peaks at g = 6 and g = 2 suggest axial symmetry and structure **III** would seem likely in tetrahydrofuran solution. Whilst the ESR spectra of the MnX_2 -

Fig. 5. X-band ESR spectra of (a) $Mn(NCS)_2(CNBu^t)$ and (b) $Mn(NCS) \{P(C_5H_{11})_3\}$ in frozen THF, 93 K.

(CNBu^t) (X = Cl, NCS) are more complex, Figs. 2 and 5, they are also indicative of axial symmetry. Further evidence for structure **III** is available from the solution infrared spectrum which exhibits only a single band at 2097 cm⁻¹ assignable to terminal Mn–NCS moieties.

Whilst the stoichiometry and magnetic and ESR properties of the $MnX_2(CNBu^t)$ complexes mirror those of the $MnX_2(PR_3)$ complexes no activity towards the reversible coordination of dioxygen has been observed in the former. Figures 2–5 contain a

comparison of the ESR spectra of the two types of complexes (for X = Cl, I, NCS) and it can be seen that there are strong similarities in THF solution. The exception is the bromide, for, whilst $MnBr_2(CNBu^t)$ does exhibit peaks at g = 2 and g = 6, Fig. 3, the g = 6 peak is of a different character from that of, for example, $MnBr_2(PPhBu_2^i)$.

Phosphine/Isocyanide Exchange Reactions

Although no activity towards dioxygen binding was observed for the $MnX_2(CNBu^t)$ complexes, tetrahydrofuran solutions of some $MnX_2(CNBu^t)$ complexes became active on addition of a stoichiometric (1:1) quantity of PBu_3^n , Table III. All measurements were made at 193 K using our standard gas burette apparatus [3].

The data given in Table III indicate that all the halide complexes, $MnX_2(CNBu^t)$ (X = Cl, Br, I), on addition of PBu_3^n (1:1), are active towards dioxygen coordination. The pseudohalide thiocyanate complex does not, however, form an active complex with PBu_3^n in tetrahydrofuran. This is consistent with data from observations of $Mn(NCS)_2(PBu_3^n)$ in THF solution [27].

On exposure of THF solutions of a 1:1 mixture of $MnX_2(CNBu^t)$ (X = Cl, Br, I) and PBu_3^n at 0 °C to an atmosphere of dry dioxygen a rapid and vivid colour change occurs. The visible spectra of the $MnCl_2(CNBu^t)/PBu_3^n/O_2$ and $MnBr_2/PBu_3^n)O_2$ systems exhibited absorption bands at 529 and 395 nm (X = Cl) and 574 and 418 nm (X = Br), the spectra being identical to those found for $MnX_2(PBu_3^n)$ -(O_2) (X = Cl, Br) complexes in tetrahydrofuran [28]. The infrared spectra of these solutions exhibit bands at *ca.* 2120 cm⁻¹, assignable to free CNBu^t. The reactions may thus be expressed

$$MnX_2(CNBu^t) + PBu_3^n \xrightarrow{O_2}_{0 \ C}$$

 $MnX_2(PBu_3^n)(O_2) + CNBu^t$

The $MnI_2(CNBu^t)/PBu_3^n$ system also undergoes a vivid colour change in THF at 195 K when exposed to dioxygen. On warming to room temperature,

Complex Concentration Total O₂ Less blank Mn:O₂ ratio $(\times 10^{-3} \text{ mol dm}^{-3})$ (cm^3) uptake (cm³) MnCl₂(CNBu^t)/PBu₃ⁿ 32.0 10.0 4.44 1.01 MnBr₂(CNBu^t)/PBu₃ⁿ 6.19 35.2 13.2 0.95 MnI₂(CNBu^t)/PBu₃ⁿ 1.01 9.14 42.6 20.6 Mn(NCS)₂(CNBu^t)/PBu₃ⁿ 6.23 22.4 0 0

TABLE III. Dioxygen Uptake for the MnX₂(CNBu^t)/PBu₃ⁿ System^a

^a100 cm³ aliquots; blank THF absorbs 22.0 cm³ dioxygen at 193 K.

Mn(II) Complexes of Tertiary Butylisocyanide

Fig. 6. X-band ESR spectra of (a) $MnCl_2(CNBu^t) + PBu_3^n$ and (b) $MnCl_2(PBu_3^n)$ in frozen THF, 93 K.

Fig. 7. X-band ESR spectra of (a) $MnBr_2(CNBu^t) + PBu_3^n$ and (b) $MnBr_2(PBu_3^n)$ in frozen THF, 93 K.

however, the green colour rapidly dispersed, consistent with observations on the $MnI_2(PBu_3^n)/O_2$ system [28].

Further evidence for a ligand-exchange process

Fig. 8. X-band ESR spectra of (a) $MnI_2(CNBu^t) + PBu_3^n$ and (b) $MnI_2(PBu_3^n)$ in frozen THF, 93 K.

Fig. 9. X-band ESR spectra of (a) $Mn(NCS)_2(CNBu^t) + PBu_3^n$ and (b) $Mn(NCS)_2\{P(C_5H_{11})_3\}$ in frozen THF, 93 K.

taking place on addition of PBu_3^n to $MnX_2(CNBu^t)$ comes from ESR spectra which show subtle differences between the $MnX_2(CNBu^t)$ and the MnX_2 - $(CNBu^t)/PR_3$ systems, Figs. 6–9.

195

Experimental

Anhydrous manganese(II) salts were prepared as previously reported [29]. Physical measurements were performed as published earlier [30]. Gas uptakes were carried out as described in ref. 3.

Preparation of MnX₂(CNBu^t) Complexes

The method was the same for each complex and will be exemplified for $Mn(NCS)_2(CNBu^t)$ here: anhydrous manganese(II) thiocyanate (1.02 g, 6.0 mmol) was added to freshly distilled dry toluene (70 cm³) in a 250 cm³ side-arm flask which had previously been flame dried in vacuo. Tertiary butylisocyanide (0.67 cm³) (Fluka Chemicals) was added and the mixture stirred for 72 h. The resulting yellow-white complex was filtered using a Schlenk apparatus and dried in vacuo.

Acknowledgements

We are grateful to The Science Research Council and The Central Electricity Generating Board for the award of a CASE Studentship (C.G.B.) and The Board of Regents of The University of West Florida for Sabbatical Leave (S.P.T.).

References

- 1 D. S. Barratt and C. A. McAuliffe, J. Chem. Soc., Dalton Trans., submitted for publication.
- 2 D. S. Barratt and C. A. McAuliffe, Inorg. Chim. Acta, submitted for publication.
- 3 C. A. McAuliffe, H. F. Al-Khateeb, D. S. Barratt, J. C. Briggs, A. Challita, A. Hosseiny, M. G. Little, A. G. Mackie and K. Minten, J. Chem. Soc., Dalton Trans., 2148 (1983).
- 4 M. G. Little, C. A. McAuliffe and J. B. Raynor, J. Chem. Soc., Chem. Commun., 68 (1982).
- 5 C. A. McAuliffe, D. S. Barratt, C. G. Benson, A. Hosseiny, M. G. Little and K. Minten, J. Organomet. Chem., 258, 23 (1983).

- 6 D. S. Barratt and C. A. McAuliffe, J. Chem. Soc., Chem. Commun., 594 (1984).
- 7 G. A. Gott and C. A. McAuliffe, J. Chem. Soc., Dalton Trans., accepted for publication (Paper 6/1561).
- 8 D. S. Barratt and C. A. McAuliffe, Inorg. Chim. Acta, 97, 37 (1985).
- 9 D. S. Barratt, C. G. Benson, G. A. Gott, C. A. McAuliffe and S. P. Tanner, J. Chem. Soc., Dalton Trans., 2661 (1985).
- 10 G. A. Gott and C. A. McAuliffe, J. Chem. Soc., Dalton Trans., (1987) in press (Paper 6/987).
- 11 G. A. Gott, J. Fawcett, C. A. McAuliffe and D. R. Russell, J. Chem. Soc., Chem. Commun., 1283 (1984).
- 12 L. Malatesta and F. Bonati, 'Isocyanide Complexes of Metals', Wiley, New York, 1971.
- 13 L. Naldini, Gazz. Chim. Ital., 90, 871 (1960).
- 14 D. S. Matteson and R. A. Bailey, J. Am. Chem. Soc., 90, 3761 (1968).
- 15 D. T. Plummer and R. J. Angelici, Inorg. Chem., 22, 4063 (1983).
- 16 P. M. Treichel and G. E. Dirreen, J. Organomet. Chem., 39, C20 (1972).
- 17 P. M. Treichel, G. E. Dirreen and H. J. Much, J. Organomet. Chem., 44, 339 (1972)
- 18 P. M. Treichel, D. W. Firsich and G. P. Essenmacher, Inorg. Chem., 18, 2405 (1979).
- 19 S. Grant, J. Newman and A. R. Manning, J. Organomet. Chem., 96, C11 (1975).
- 20 R. D. Adams and D. E. Chodosh, J. Organomet. Chem., 87, C48 (1975). 21 K. K. Joshi, P. L. Pauson and W. H. Stubbs, J.
- Organomet. Chem., 1, 51 (1963).
- 22 A. L. Balch and L. S. Benner, J. Organomet. Chem., 135, 339 (1977).
- 23 L. S. Benner, M. M. Olmstead and A. L. Balch, J. Organomet. Chem., 159, 289 (1978).
- 24 F. A. Cotton and F. Zingales, J. Am. Chem. Soc., 83, 351 (1961).
- 25 T. J. King, B. Beagley, J. C. Briggs, A. Hosseiny, C. A. McAuliffe, K. L. Minten and W. E. Hill, J. Chem. Soc., Chem. Commun., 1305 (1984).
- 26 A. H. Norbury, Adv. Inorg. Chem. Radiochem., 17, 231 (1975).
- 27 A. Hosseiny, Ph.D. Thesis, University of Manchester, 1980.
- 28 H. F. Al-Khateeb, Ph.D. Thesis, University of Manchester, 1980.
- 29 A. Hosseiny, A. G. Mackie, C. A. McAuliffe and K. Minten, Inorg. Chim. Acta, 49, 99 (1981).
- 30 A. Hosseiny, C. A. McAuliffe, K. Minten, M. J. Parrot, R. Pritchard and J. Tames, Inorg. Chim. Acta, 39, 227 (1980).