Synthesis, Reactivity, and X-ray Crystal Structure of a Remarkably Stable Bis(alkoxo)platinum Complex

NATHANIEL W. ALCOCK, ANDREW W. G. PLATT and PAUL G. PRINGLE* *Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.* (Received September 18, 1986)

Abstract

Platinum complexes of the ligand $Ph₂PCH₂$ - $CMe₂OH$ are described including $[Pt(PPh₂CH₂ CMe₂O₂$] which contains Pt-O bonds of unprecedented stability that readily undergo insertion of $SO₂$ and CO.

Few alkoxo-platinum complexes have been fully characterised because they are often strongly basic, extremely moisture and base sensitive, and very labile, undergoing β -hydrogen elimination rapidly $[1-4]$. Despite this high instability, considerable effort $[1, 5-7]$ has recently been expended in attempts to synthesise complexes containing alkoxo-platinum bonds so that their reactivity can be systematically investigated. In this communication we report the synthesis of chelate-stabilised alkoxo complexes of platinum which are very stable both thermally and hydrolytically and are suitable model compounds for the study of the reactivity of Pt-0 bonds.

We reasoned that Ph₂PCH₂CMe₂OH (1) would form chelate stabilised alkoxo-platinum complexes.

The synthesis of platinum complexes of **1** are summarised in Scheme 1.** The white complex 2 isolated on treatment of $[PtCl₂(NCBu^t)₂]$ with 1 in acetone, was assigned the *cis*-structure 2a on the basis of the IR spectrum: ν (Pt-Cl) 310, 285 cm^{-1} . The $^{31}P{^{1}H}$ NMR spectrum of a CDCl₃ solution of 2 at 25 \degree C was a broad singlet with ¹⁹⁵Pt satellites. At -60° C the spectrum showed a sharp AX pattern with chemical shifts and coupling constants (Table I) fully consistent [8] with the salt structure 2b, in which the alcohol donor group has displaced a chloro ligand. Complex 2 dissolves in methanol to give a conducting solution $(A = 78$ Ω^{-1} cm² mol⁻¹). This indicates that the OH donor in ligand **1** is a stronger donor for platinum than

Scheme 1. (i) Ligand 1 in acetone, $+25$ °C; (ii) AgClO₄ in acetone, $+25$ °C; (iii) Et₃N, CHCl₃, $+25$ °C; (iv) Et₃N/CH-Cl₃ or KOH/MeOH or LiN(SiMe₃)₂/THF at 25 °C; (v) Dilute HCl, CHCl₃, $+25$ °C.

TABLE I. ³¹P NMR Data^a

Complex	δ (P) (ppm)	1J (PtP) (Hz)	$2J(P_A P_B)$ (Hz)
$2^{\rm b}$	$+30.7^{\rm c}$	3749	18
	-1.2^d	3937	
3	$+16.0$	3952	
4 ^e	$+23.1$	3303	
	4.6	2723	
$\frac{5}{6}$ f	5.4, 0.6		325
$\overline{7}$	35.9	3121	388
	13.4	3142	

 $a_{\text{In CDC1}_3}$ unless stated otherwise; 36.4 MHz, chemical shifts (± 0.1 ppm) are to high frequency of 85% H₃PO₄. $\frac{b}{c}$ At $\frac{6.1 \text{ ppm}}{60}$ Pa in structure 2b. $\frac{d_p}{d_p}$ in structure 2b. I_{C} \sim I_{D} $e_{\ln (CD_3)_2}$ CO.
intensity.

^{*}Author to whom correspondence should be addressed. **All new complexes have been characterised by elemental analysis (C, H, Cl), IR, ¹H and ^{31}P NMR spectroscopy.

the OMe in $Ph_2PCH_2CH_2OMe$ [9] or the SPh in Ph₂PCH₂CH₂SPh [10], both of which give neutral complexes of the type $[PtCl_2(P)_2]$. The fluxionality observed in solutions of 2 at ambient temperatures may be due to rapid reversible Cl⁻ coordination or intramolecular interchange of OH donors (Scheme 2).

The bis-chelate dicationic species 3 is prepared quantitatively by the addition of $AgClO₄$ to solutions of 2. The neutral bis(alkoxo)platinum species 4 is readily formed by treatment of 2 with a variety of bases under mild conditions or by deprotonation of 3 with triethylamine (see Scheme I). Complex 4 is remarkably stable thermally and hydrolytically, e.g. it was recovered unchanged after treatment with boiling ethanolic KOH for 16 h and can be recrystallised from aqueous methanol solutions. Thus it contrasts with the recently reported [l] [Pt(dppe)- $(OMe)_2$, the first bis(alkoxo)platinum complex, which decomposes in CH₂Cl₂ solution at $+25$ °C and could not be isolated in pure form.

It may be predicted [11] from the mismatch of hard donor (alkoxo) and soft acid [platinum(H)] that alkoxo-platinum bonds would be weak, and if correct, this would help explain the instability of such complexes. The X-ray crystal structure of 4 was determined to confirm the structural identification, and obtain the Pt -O bond distance. It reveals $(Fig. 1)$ that the Pt-O bond is of absolutely normal length. The average Pt-O distance in 5 of 2.024(3) A can best be compared with the Pt-C distance of 2.120(4) Å in $[(Ph₂MeP)₂PtMe₂]$, as this contains closely similar phosphine ligands coordinated to Pt(II) $[12]$; it also has a Pt-P distance $(2.284(1))$ A) reasonably similar to that in 4. The 0.11 A difference in covalent radius of C and 0 (obtained by comparing C-C and C-O bonds) corresponds very closely to the difference between the $Pt-C$ and $Pt-O$ bonds.

Fig. 1. Molecular structure of $[Ph_2PCH_2C(CH_3)_2O]_2Pt$. The crystals are rhombohedral, space group $R3$, $a = 17.026(2)$ A, $\alpha = 92.76(1)^{\circ}$, with $Z = 6$. $R = 0.029$ for 3914 unique observed reflections $(I/\sigma(I)$ 3.0). Principal dimensions are Pt-P 2.222(1), Pt-O 2.024(3) A (averages) $P(1) - Pt-P(2)$ 105.7(1)°, O(1)-Pt-O(2) 85.7(1)°. The crystals contain 3.5 molecules of H_2O per molecule of complex and show a network of hydrogen bonds involving the solvent and the oxygen atoms of the ligand molecules.

The value of $\frac{1}{f}$ (PtP) for 3 is very large, indicating that the OH group is a weak donor ligand but the value of $\frac{1}{f}$ (PtP) for the alkoxo complex 4 is in the range expected for P *trans* to Cl [13]. This reinforces the X-ray crystallographic evidence that the $Pt-O$ bonding is not inherently weak and the observed instability of alkoxo-platinum complexes is almost certainly kinetic, *i.e.* facile β -hydride elimination.

The methyl substituents on ligand **1** are not essential for the stability of the alkoxo--platinum species since we have recently found that the ligands Ph_2 - $PCH₂CHMeOH$ and $Ph₂PCH₂CH₂OH$ give analogous chelate complexes to 3 and 4 which are less soluble but have similar stability. The β -hydrogens in the chelates formed by these ligands are oriented away from the metal centre and are thus not available for elimination; the stability of metallacarbacycles relative to dialkyls is explained similarly [141.

Preliminary results show that 4 is a suitable model compound for studying the reactivity of Pt-OR bonds. Hence a solution of 4 in CDCl₃ reacts rapidly with an excess of $SO₂$ to give the bis sulphinate complex 5, the product of $SO₂$ insertion into both of the Pt-O bonds of 4 with concomitant $cis - trans$ isomerisation. Structure 5 is assigned on the basis of elemental analysis, IR $[17]$ $(\nu(SO)$ 1370(m), 1360(m), 1150(s) cm⁻¹), ³¹P (Table I) and ¹H NMR (virtual triplet at δ 2.91 for the CH₂ resonance). An intermediate species, characterised only in solu $\overline{7}$

tion by its $31P$ NMR spectrum (Table I), is assigned structure 6, the product of mono insertion. Similarly CDCla solutions of 4 react with CO (30 atm) to give a single product assigned structure 7 on the basis of ^{31}P NMR (Table I) and IR (ν (CO) 1625 cm⁻¹ evidence).

Acknowledgements

We thank the SERC for financial support and platinum salts.

References

- H. E. Bryndza, S. A. Kretchmor and T. H. Tulip, J. *Chem. Sot., Chem. Commun., 971 (1985).*
- M. A. Bennett, G. B. Robertson, P. 0. Whimp and T. Yoshida, *J. Am. Chem. Soc.*, 95, 3028 (1973).
- T. Yoshida, T. Okano and S. Otsuka, J. *Chem. Sot., Dalton Trans., 993 (1976).*
- A. B. Gocl, S. Goel and D. G. Vandervcer, *Inorg. Chim. Acta, 54, 2169 (1981).*
- $h_2 P$ Pt PPh₂ $\frac{1}{5}$ H. E. Bryndza, *Organometallics. 4, 406 (1985).*
	- **E.** *Brynacu*, *Grynacu, Crystometatiics*, *i*, *i*, *oo* (1969). *3, 444 (1984).*
	- H, E. Bryndza, *Organometallics, 4, 1686 (1985).*
	- *8* R. T. Boeri: and C. J. Willis, *Inorg. Chem., 24, 1059* (1985).
	- *9* G. K. Anderson and R. Kumar, *Inorg.* Chem., 23, 4064 (1984).
	- 10 A. R. Sanger, *Can. J.* Chem., 61, 2214 (1983).
	- 11 J. A. Davies and F. R. Hartley, Chem. *Rev., 81,* 79 (1981).
	- *12* J. M. Wisner, T. J. Bartczak, J. A. Ibers, J. J. Low and w. *A. History 11 of Bartegary 31 11, 1995, 61 of 290* x
	- *13* \overline{P} . Pregosin and R. W. Kunz, $\overline{31}$ P and $\overline{13}$ C NMP of Transition Metal Complexes', Springer, Berlin, 1979.
	- *14* J. X. McDermott, J. F. White and G. M. Whitesides, J. *Am. Chem. Sot., 98, 6521* (1976).
	- 11.1.1. Shem, Soc., 90, 6021 (1976).
S. R. A. Michelin, M. Napoli and R. Ros, *I. Organomet*. *Chem., I75, 239 (1979).*