NATAŠA BUKOVEC* and SVETOZAR MILIĆEV Department of Chemistry, Edvard Kardelj University, Ljubljana, Yugoslavia

(Received November 10, 1986)

The lanthanides form a variety of double sulphates with formula $M^{I}Ln^{III}(SO_{4})_{2} \cdot xH_{2}O$. We have reported recently the synthesis, thermal decomposition [1] and crystal structure [2] of a new compound $N_{2}H_{5}Nd(SO_{4})_{2} \cdot H_{2}O$. We now report the syntheses, unit cell dimensions (determined from powder data) and assignments of infrared and Raman spectra for the family of eight compounds of the lanthanide elements (from La to Tb, with the exception of Pm) of the same composition.

Experimental

The compounds were prepared as described elsewhere [1]. X-ray powder data were collected by a Philips diffractometer (Cu K α radiation) using silicon (a = 5.431065 Å) [3] as an internal standard. Unit cell dimensions were refined by a least-squares program (SOS2) [4].

*Author to whom correspondence should be addressed.

The infrared spectra were taken as nujol and perfluorobutadiene mulls on a Perkin-Elmer 521 spectrophotometer in the 250-4000 cm⁻¹ region. Raman spectra were obtained with a SPEX-1401 double monochromator at the Department for Fluorine Chemistry of the Jožef Stefan Institute. They were excited by the 5145 Å line of a Spectraphysics Ar⁺ ion laser, model CR-3, in back-scattering geometry.

Results and Discussion

The compounds $N_2H_5Ln(SO_4)_2 \cdot H_2O$ (Ln = La, Ce, Pr, Sm, Eu, Gd, and Tb) are isomorphous with $N_2H_5Nd(SO_4)_2 \cdot H_2O$ [2] (Table I). We may reasonably conclude that in the new compounds the lanthanide atom is likewise nine-coordinated with seven O-atoms of the sulphate ions, one water mole-

TABLE I. Unit Cell Dimensions of $N_2H_5Ln(SO_4)_2 \cdot H_2O$ (Ln = La-Tb except Pm) from X-ray Powder Data

Ln	a (Å)	b (Å)	c (Å)	$V(Å^3)$
La	11.050(1)	9.585(2)	15.874(4)	1680.0
Ce	11.023(2)	9.568(1)	15.817(2)	1668.2
Pr	10.956(4)	9.567(4)	15.786(3)	1654.6
Nd ^a	10.960(3)	9.561(4)	15.764(6)	1651.9
Sm	10.859(2)	9.510(2)	15.678(2)	1619.1
Eu	10.821(2)	9.509(2)	15.684(3)	1613.8
Gd	10.769(1)	9.505(2)	15.645(2)	1601.4
Tb	10.738(1)	9.538(2)	15.642(3)	1602.0

^aCell dimensions from monocrystal data [2].

Fig. 1. Representative spectra of the series. Infrared spectra (nujol and perfluorobutadiene mulls) and Raman spectrum of $N_2H_5Ce(SO_4)_2$ ·H₂O.

La		Ce		Pr		PN		Sm	Eu	Gd	Tb	Assignment ^b
IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	IR	IR	IR	
3375s, br		3375s, br	3380(2)	3375s, br		3375s, br	3380(3)	3385s, br	3390s, br	3390s, br	3395s, br	(H ₂ O) _s
3275s		3275s	3275(2)	3275s		3270s	3270(3)	3275s	3275s	3275s	3275s	
3150° hr		3150e	3175(2)	31500		3160m hr	3180(3)	31600	31600	31600	31606	(NHV)
3110s, br		3110s. br	(1)0010	3105s. br		3110m. br		3110s. br	3115s. br	3115s. br	3110s. br	SITTE
3000m, br		3000m, br	3015(?)	2995m, br		2995m, br		3000m, br	3000m, br	2995m, br	2995m, br)	
1655 w-m 1640sh		1655w-m 1640sh		1655w-m 1640sh		1650w-m 1638sh		1655w-m 1640sh	1655w-m 1640sh	1650wm 1640sh	1650sh 1645w-m	$(NH_2)_{d} + (H_2O)_{d} (?)$
1610wm		1610w-m	1610(2)	1610w-m		1610w-m		1610wm	1615w-m	1615w-m	1615w-m	
1580m 1535m	1603(4)	1580m 1540m	1600(4) 1585(2) 1540(1)	1580m 1535m	1601(4)	1580m 1540m	1605(5)	1580m 1540m	1580m 1540m	1585m 1545m	1585m 1545m	• (NH3 ⁺)d
1393vw 1260sh	1395(3) 1265(1)	1393vw 1260sh	1392(2)	1 390vw 1 265sh	1393(2)	1395vw 1265sh	1398(3)	1394vw 1265sh	1395vw 1270sh	1396vw 1270sh	1396vw 1270sh	(NH ₂) _r
	1204(4)		1202(5)		1202(5)		1205(4)					(NH ₃ ⁺) _r
1180sh 1145vs	11 30(6)	1180sh 1145vs	1146(2) 1125(7)	1180sh 1145vs	1147(3) 1126(6)	1 180sh 1 150vs 1 120sh	1126(sh)	1180sh 1150vs	1180sh 1150vs	1180sh 1150vs	1175sh 1150vs	
1090vs	1100(6) 1100(6) 1080(8)	1095 vs	1105(14) 1095(sh) 1085(4)	1095vs	1097(sh) 1085(5)	1100vs 1085vs	1002(8)	1100vs 1080vs	1105vs	108500	1100vs	$\nu_3(\mathrm{SO_4}^{2-})$
1025vs	1053(7)	1030vs	1073(4) 1052(10)	1075vs 1030vs	1074(sh) 1053(10)	1060sh 1032vs	1078(8) 1060(13)	1035vs	1050vs	1065vs 1040vs	1065vs 1045vs	
1005vw	1015(100)	1010vw	1012(100)	1010vw	1011(100)	1012w	1015(100)	1010vw	1020vw	1015vw	1015w	$\nu_1(\mathrm{SO}_4^{2-})$
m066	1002(34)	M066	999(35)	w066	999(39)	995w-m	1002(40)	995vw	1005vw	1000sh	1000vw	(NN) _s
665sh		665sh	666(1)	660sh		670m, br	674(1)	670m, br	680m, br	670m	665sh	
650m	653(5)	650m	650(4)	650m	652(5)	650m	650(3)	650m	650m	650m	650m	
630sh	627(6)	630w-m	(6)660	630w-m	030(0)	WC50	030(4)	m-wc60	64UW-M	m-wcco	040W-m	$- \nu_4(SO_4^{2-})$
620wm	613(6)	620w	622(6) 608(6)	620w	623(7)	620wm	624(3) 610(3)	620w-m	615w-m	615w-m	620w-m	
595m	101210	595m	(1)000	595m	(0)200	595s	101010	595m	595m	595m	595m	

TABLE 11. Infrared and Raman Spectra a of the $N_2H_5Ln(SO_4)_2 \cdot H_2O$ Compounds $({\rm cm}^{-1})$

L26

v-m (H ₂ O) _w	v (N ₂ H ₅ ⁺) _t	$\mathbb{W} \left\{ \begin{array}{c} \nu_2(\mathrm{SO}_4^{2-}) \\ \end{array} \right.$	Coordinated sulphate, (Ln-O) _s vibrations and lattice vibrations	= rocking, s = stretching,
1 565w	1 490w	425v 409v		iation, r
560w-m	495w-m	432vw 414vw		^o d = deform
560w-m	495w-m	452vw 430vw 410vw		r = very.
550w-m	490w-m	450vw 428vw 410vw		shoulder, and v
		476(5) 457(4) 440(4) 420(4)	286(5) 270(12) 229(3) 213(9) 190(1) 164(6) 152(3) 137(1)	= weak, sh =
550w-m	495w-m	450vw 430vw		medium, w
		476(10) 458(12) 440(11) 420(11)	286(2) 232(6) 199(3) 173(1) 150(3) 135(1)	= strong, m =
545w-m	495w-m	409vw		intensities: s
		474(9) 457(10) 438(10) 419(9)	283(2) 266(1) 230(3) 196(1) 170(1) 148(2) 133(2)	eses. Infrared
550w-m	500w-m	457 vw 433 vw 413 vw		ven in parenth
		479(9) 460(10) 441(10) 423(10)	297(2) 267(2) 231(4) 196(2) 149(2) 135(1)	insities are gi
545w-m	495w-m			^a Raman inte

t = torsion, w = wagging

cule and one nitrogen atom of the $N_2H_5^+$ ion. The SO_4^{2-} ions, $N_2H_5^+$ ions and H_2O molecules are linked by a system of O-H···O and N-H···O hydrogen bonds. We ascribe the continuous decrease of the cell dimensions from the lanthanum to terbium compound to the lanthanide contraction. The compounds have almost identical vibrational spectra (Table II, Fig. 1). All the components are coordinated to the lanthanide ion, so the slight increase $(5-10 \text{ cm}^{-1})$ in almost all the bands should also be assigned to the contraction. There are eight formula units in the orthorhombic primitive cell (space group $Pca2_1$, C_{2v} , No 29, with all atoms in general positions [2]). Factor group analysis predicts 288 internal modes uniformly divided into 72 A₁, 72 A₂, 72 B₁ and 72 B₂ symmetry species. A₂ vibrations are inactive in the infrared spectra, and all of them are active in the Raman spectra.

Bands assigned to the vibrations of the SO_4^{2-} ions are easily identified by comparison with the literature data (see for instance ref. 5). The v_2 vibration is observed as a very weak absorption in the infrared, although it should gain activity because of the lower site symmetry [6]. The explanation might be a weak static field, which is in accord with the crystallographically observed insignificant deformation of the SO_4^{2-} ion [2]. Numerous split bands are obviously caused by the correlation field. Weak hydrogen bonding demonstrated by the spectra both in the OH and NH stretching regions is also in accord with the suggested weak static field. Correlation between O-H or N-H stretching frequencies and O-O [7] or N-O [8] distances almost exactly reproduce the X-ray data (O-O distances from the spectra are about 2.79 Å and N-O distances between 2.77 and 2.97 Å). These values are just under the van der Waals distances [9], confirming the very weak interactions.

Of the two strong bands in the Raman spectra $(1015 \text{ cm}^{-1} \text{ and } 1002 \text{ cm}^{-1})$, which appear on the slope of the $v_3(SO_4^{2-})$ absorption in the infrared spectra as weak to very weak bands, we assign the stronger one to the symmetric breathing of the isotropic sulphate ion, and the weaker one to the N-N stretching of the asymmetric $N_2H_5^+$ ion. The frequency of the N-N mode is unusually high, indicating coordinated N₂H₅⁺ ions [10]. This is confirmed by X-ray data [2], which give the Nd-N distance as 2.79 Å (the van der Waals radius of N is 1.55 Å and that of Nd should be larger than its Bragg-Slater radius, which is 1.85 Å [11]). Deformation and rocking modes of the $N_2H_5^+$ ion are assigned in accordance with the literature [12] and the references cited therein. Rocking bands of the NH3⁺ group, except the one in the Raman spectra, are hidden by the split v_3 mode of the SO₄²⁻ ion. The torsion frequency of the $N_2H_5^+$ ion (495 cm⁻¹) is in accord with the weak hydrogen bond (compare the corresponding bands in N_2H_5F at 568 and 638 cm⁻¹, with stronger hydrogen bonding [13]). We could not identify any Nd-N stretching band. Some of the bands of coordinated water are tentatively assigned, mostly in accordance with ref. 14.

Conclusion

Powder diffraction data and vibrational spectra demonstrate the isomorphism of a series of orthorhombic hydrazinium(1+) lanthanide sulphates. Vibrational spectra, which are characteristic of the coordinated hydrazinium(1+) ion, manifest very weak hydrogen bonding. They indicate negligible deformations of the sulphate ions and also coupling of vibrations within the unit cell.

References

- 1 N. Bukovec, Thermochim. Acta, 83, 391 (1985).
- 2 I. Leban, N. Bukovec and V. Kaucic, Vestn. Slov. Kem. Drus., 31, 401 (1984).

- 3 R. D. Deslattes and A. Henins, Phys. Rev. Lett., 31, 972 (1973).
- 4 J. Soose and G. Meyer, 'SOS2, program for calculation of unit cell parameters', Giessen, 1980.
- 5 S. D. Ross, 'Inorganic Infrared and Raman Spectra', McGraw-Hill, London, 1972.
- 6 A. Hezel and S. D. Ross, Spectrochim. Acta, 22, 1949 (1966).
- 7 A. Novak, Struct. Bonding (Berlin), 18, 177 (1974).
- 8 K. Nakamoto, M. Margoshes and R. E. Rundle, J. Am. Chem. Soc., 77, 6480 (1955).
- 9 W. C. Hamilton and J. C. Ibers, 'Hydrogen Bonding in Solids', Benjamin, New York, 1968, p. 16.
- A. Nieuwpoort and J. Reedijk, *Inorg. Chim. Acta*, 7, 323 (1973);
 D. P. Brown, J. A. Donner, J. W. Hall, S. R. Wilson, R. B. Wilson, D. J. Hodgson and W. E. Hatfield, *Inorg. Chem.*, 18, 2635 (1979).
- 11 J. E. Huheey, 'Inorganic Chemistry', Harper and Row, New York, 1972, p. 182; J. C. Slater, J. Chem. Phys., 41, 3199 (1964).
- 12 S. Milićev and J. Maček, Spectrochim. Acta, Part A, 41, 651 (1985).
- 13 P. Glavič and D. Hadži, Spectrochim. Acta, Part A, 28, 1963 (1972).
- 14 J. R. Ferraro and A. Walker, J. Chem. Phys., 42, 1278 (1965).